Не очень понимаю, зачем тут вообще какие-то интегралы; сказано же, что смещение мало.
Почему вообще распределение зарядов на внутренней сфере нетривиально? Потому, что её смещение индуцирует перераспределение зарядов на 
внешней сфере, которые уже, в свою очередь, перераспределяют заряды на внутренней. Ясно, что поправка к "равновесному" распределению 

 на внутренней сфере в первом приближении имеет вид 

, и надо лишь определить, что такое 

.
Что ж; при 

 заряды на внешней сфере перераспределяются в первом приближении так, как если бы на расстояние 

 сместился просто точечный заряд 

. Это эквивалентно (по методу отражений) появлению далеко-далеко, на расстоянии 

 от центра внешней сферы, точечного заряда 

 (за знаками не следим -- проще в самом конце выбрать правильный). Последний, в свою очередь, перераспределяет заряды на внутренней сфере так, как если бы внутри неё, на малом расстоянии 

 от её центра, появился заряд 

. Тогда 

, где 

 -- это величина полусуммы напряжённостей, создаваемых зарядами 

 и 

 в двух точках пересечения внутренней сферы и линии, соединяющей эти заряды (полуразность нас не интересует, т.к. она отвечает за 

). Заряд 

 создаёт полусумму, равную просто 

 (в первом приближении, естественно); вклад от заряда 

 на порядок меньше, т.к. пропорционален 

. Итого: 

.