2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 ВТФ-cтепень n3: дробные числа
Сообщение17.12.2013, 13:29 
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
ДЛЯ СТЕПЕНИ n=3

Уравнение теорема Ферма:
$A^n+B^n=C^n$
$A, B, C$ - взаимно простые числа.
Приведем доказательство теоремы Ферма для степени n=3, записав уравнение (1) следующим образом:
$A^3=C^3 - B^3$ (2)
Полагаем, что $A$ – заданное целое нечетное число.
Полагаем, что:
$B$ – четное целое число;
$C$ – нечетное целое число.
Для любых двух чисел, четного$B$ и нечетного $C$, справедливы зависимости:
$B=N-X$ (3)
$C=N+X$ (4)
Сложив уравнения (3), (4), получим:
$N=0,5(C+B)$ (5)
Вычтя уравнение (3) из уравнения (4), получим:
$X=0,5(C- B)$ (6)
Поскольку числа $B, C$ имеют разную четность, числа $N, X$ – конечные десятичные дроби, кратные $0,5$.
Из уравнений (2), (3), (4) следует:
$A^3=(N+X)^3 - (N-X)^3 =
N^3+3N^2X+3NX^2+X^3 -N^3+3N^2X--3NX^2+X^3$
Отсюда имеем:
$X^3 +3N^2X- 0,5A^3=0$ (7)
Уравнение (7) соответствует так называемому приведенному кубическому уравнению:
$X^3 +pX +q=0$ (8)

Здесь: $p=3N^2$, $q=-0,5A^3$.
Дискриминант уравнения равен:
$D=(p/3)^3 + (q/2)^2=N^6+A^6/16$ (9)
Запишем:
$N=0,5(C+B)=0,5K$
$K=C+B$нечетное число.
С учетом того, что $N=0,5K$, из уравнения (9) следует:
$D=(0,5K)^6+A^6/16 = 0,0625(0,25K^6+A^6)$ (10)
Тогда:
$\sqrt{D}=0,25\sqrt{0,25K^6+A^6}$ (11)
Запишем:
$0,25K^6= (0,5K^3)^2$ (12)
Любое число, кратное $0,5$, равно:
$(M+0,5)^2=M(M+1) +0,25 =zzzQ,25$. (13)
$Q$всегда или ноль или четная цифра.
Поскольку $A$нечетное число, то: $A^6=sssP$, где $P$всегда нечетная цифра.
Следовательно:
$\sqrt{0,25K^6+A^6}= \sqrt{zzzQ,25+sssP}=
=\sqrt{eeeR,25}$ - иррациональное число, так как R нечетная цифра, поскольку цифры $Q, P$ имеют разную четность.
Следовательно, в соответствии с уравнением (11) $\sqrt{D}$ - иррациональное число.
Дискриминант $D>0$, следовательно, уравнение (7) имеет одно действительное решение:
$X=U+V$ (14)
Здесь:
$U =\sqrt[3]{-0,5q+\sqrt{D}}$ (15)
$V =\sqrt[3]{-0,5q-\sqrt{D}}$ (16)
Так как $\sqrt{D}$ - иррациональное число, то числа $U, V$ также иррациональные. Следовательно, в соответствии с уравнением (14) $X$ – иррациональное число.
Следовательно, в соответствии с уравнениями (3), (4) числа $B, C$ при заданном целом нечетном числе $A$ также иррациональные. Следовательно, для заданного целого нечетного числа $A$ невозможно найти пару целых чисел $B, C$, удовлетворяющих уравнению (2) теоремы Ферма.
Таким образом, Великая теорема Ферма не имеет решения в целых числах для
показателя степени $n=3$. Вывод справедлив для любого нечетного числа $A=a^r$.

 
 
 
 Re: ВТФ-cтепень n3: дробные числа
Сообщение17.12.2013, 14:11 
pushkar в сообщении #802562 писал(а):
Следовательно, в соответствии с уравнением (14) $X$ – иррациональное число.
На каком основании сделан такой вывод? Суммы двух иррациональных чисел $U$ и $V$ указанного вида вполне может оказаться рациональным числом. Пример: $\sqrt[3]{10+\sqrt{108}}+\sqrt[3]{10-\sqrt{108}}=2$.

 
 
 
 Re: ВТФ-cтепень n3: дробные числа
Сообщение04.01.2014, 14:23 
Если я правильно разобрался, у автора в формуле (10) само
число $D$ дробное, а в приведенном примере
целое, равное $D=108$
Пример не корректен.

 
 
 
 Re: ВТФ-cтепень n3: дробные числа
Сообщение04.01.2014, 15:33 
anderberg в сообщении #809433 писал(а):
Если я правильно разобрался, у автора в формуле (10) само
число $D$ дробное, а в приведенном примере
целое, равное $D=108$
Из целого сделать дробное не проблема --- разделите все части равенства на $2$, и будет Вам дробное $D$.

 
 
 
 Re: ВТФ-cтепень n3: дробные числа
Сообщение04.01.2014, 16:02 
и anderberg и pushkar - это клоны Козий

 
 
 
 Re: ВТФ-cтепень n3: дробные числа
Сообщение04.01.2014, 17:03 
Аватара пользователя
 !  anderberg заблокирован как клон pushkar

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group