2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 КПД колеса Сегнера.
Сообщение06.12.2013, 11:07 
Аватара пользователя
Вода с некоторым давлением и малой скоростью подаётся в середину "вертушки".

Изображение

Что можете сказать о максимальном КПД такой гидротурбины? :wink:

 
 
 
 Re: КПД колеса Сегнера.
Сообщение06.12.2013, 12:42 
Если бы скорость вытекающей из трубок воды была равна линейной скорости концов трубок (вытекающая из трубок вода падала бы вниз), то вся энергия протекающей воды передавалась бы вертушке. КПД был бы 100%.

Тут надо аккуратно считать примерно как приведено ниже . Из последнего абзаца ясно, что, чем ниже скорость истечения (давление воды ), тем выше ктд.
Короче, эта вертушка плохой преобразователь.

(Оффтоп)

rustot в сообщении #796554 писал(а):
если же без упрощений, то тоже ничего сложного. частица $dm$ изначально летевшая вместе с ракетой массы $m+dm$, под действием сил со стороны двигателя изменила скорость на величину "скорости истечения" $v_0$, следовательно ракета получила импульс $dm v_0$ и изменила скорость на $dv = v_0 \frac{dm}{m}$

кинетическая энергия частицы газа изменилась на $dm (v_0^2/2 - v v_0)$

кинетическая энергия ракеты изменилась на $m (dv^2/2 + v dv) = dm(\frac{dm}{m} v_0^2 / 2 + v v_0)$

сумма изменений кинетических энергий ракеты и частицы газа $dE = \frac{dm v_0^2}{2} (1+\frac{dm}{m})$

как видим, от текущей скорости $v$ сумма изменений кинетических энергий ракеты и частицы не зависит и равна энергии потраченной двигателем. в то время как каждая из них по отдельности при изменении текущей скорости меняется на величину $\pm dm v v_0$, то есть распределение энергии двигателя между частицей и ракетой меняется вместе со скоростью, но суммарная энергия неизменна. мощность двигателя $P = dE/dt = \frac{x v_0^2}{2}$, где $x$ расход газа кг/сек.

если мощность двигателя постоянна, то ускорение ракеты постоянно растет вместе с убыванием ее массы: $a(t) = dv/dt = \frac{v_0 x}{m(t)} = \frac{v_0}{m_0/x - t}$. и только если время ее "самоликвидации" $m_0/x$ много большое рассматриваемого промежутка времени, мы можем пренебречь $t$ и считать ускорение постоянным $a = \frac{v_0 x}{m_0} = \frac{2 P}{m_0 v_0} = \frac{\sqrt{2 P x}}{m_0}$

обратите внимание, если мы лимитированы мощностью, то нам следует снижать скорость истечения, а не увеличивать для получения большей тяги, при этом увеличивая расход рабочего тела. если же мы лимитированы доступной массой рабочего тела, а энергии у нас без счета, тогда следует наоборот увеличивать скорость истечения уменьшая расход, пока хватает энергии.

 
 
 
 Re: КПД колеса Сегнера.
Сообщение06.12.2013, 19:42 
Аватара пользователя
Xey в сообщении #796877 писал(а):
Если бы скорость вытекающей из трубок воды была равна линейной скорости концов трубок (вытекающая из трубок вода падала бы вниз), то вся энергия протекающей воды передавалась бы вертушке. КПД был бы 100%.

Если вытекающая вода падает вниз, то полезная мощность равна нулю: никакого момента...

 
 
 
 Re: КПД колеса Сегнера.
Сообщение07.12.2013, 20:28 
Аватара пользователя
nikvic в сообщении #796864 писал(а):
Что можете сказать о максимальном КПД такой гидротурбины?

Что он не особо интересен. Такие штуки делают, чтобы они вращались быстро, а не экономно.

 
 
 
 Re: КПД колеса Сегнера.
Сообщение07.12.2013, 20:48 
Аватара пользователя
Стал быть, ""Зелен виноград.. :wink:

 
 
 
 Re: КПД колеса Сегнера.
Сообщение07.12.2013, 21:07 
Аватара пользователя

(Оффтоп)

Боюсь, что быстрее всего будет дождаться решения ТС, после чего останется ещё переспросить порядка 10 раз, о чём это он, собственно, и вот тогда задача будет наконец... поставлена.

 
 
 
 Re: КПД колеса Сегнера.
Сообщение07.12.2013, 21:24 
я тоже как-то не шибко понял о чем речь

 
 
 
 Re: КПД колеса Сегнера.
Сообщение07.12.2013, 21:29 
Аватара пользователя
Гм, есть старинное устройство турбины, картинка соответствует сути.
Что такое КПД - разъяснять?

 
 
 
 Re: КПД колеса Сегнера.
Сообщение09.12.2013, 09:43 
А как мощность вращения считать?

 
 
 
 Re: КПД колеса Сегнера.
Сообщение09.12.2013, 10:38 
Аватара пользователя
Null в сообщении #798088 писал(а):
А как мощность вращения считать?

По возможности - правильно :wink:

 
 
 
 Re: КПД колеса Сегнера.
Сообщение09.12.2013, 11:44 
Надо посчитать момент , который может создать заторможенная вертушка (через массу и скорость вытекающей воды). И прикинуть, как он уменьшается при увеличении скорости вращения от нуля до
Xey в сообщении #796877 писал(а):
Если бы скорость вытекающей из трубок воды была равна линейной скорости концов трубок (вытекающая из трубок вода падала бы вниз), то вся энергия протекающей воды передавалась бы вертушке. КПД был бы 100%.

И найти скорость соответствующую максимальной снимаемой мощности.

 
 
 
 Re: КПД колеса Сегнера.
Сообщение11.12.2013, 17:28 
Аватара пользователя
Придётся добавить данных.
Плотность воды, радиус колеса, угловая скорость, исходное давление...
Ищите да обрящите :shock:

 
 
 
 Re: КПД колеса Сегнера.
Сообщение11.12.2013, 18:16 
Аватара пользователя
nikvic в сообщении #799197 писал(а):
Ищите да обрящите

"обрящЕте".
Позор.

 
 
 
 Re: КПД колеса Сегнера.
Сообщение15.12.2013, 15:27 
Аватара пользователя
Ну, вот, засохла темка :facepalm:
Решение основано на формуле Бернулли в варианте Гаусса: во вращающейся с постоянной скоростью системе отсчёта центробежная сила потенциальна, а Кориолис - безработный.

 
 
 
 Re: КПД колеса Сегнера.
Сообщение16.12.2013, 23:12 
Аватара пользователя
nikvic в сообщении #801442 писал(а):
Решение основано на формуле Бернулли в варианте Гаусса: во вращающейся с постоянной скоростью системе отсчёта центробежная сила потенциальна, а Кориолис - безработный.

Отлично понимаю! Не волнуйтесь и продолжаете дальше.

 
 
 [ Сообщений: 23 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group