2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Решаю производную
Сообщение27.11.2013, 07:57 
Аватара пользователя

(Оффтоп)

Ну, а если подумать... Где взять, откуда, при чем тут "взятие"? Чем это лучше? Решить хоть как-то связано с математикой.

 
 
 
 Re: Решаю производную
Сообщение27.11.2013, 09:48 

(Оффтоп)

Зато как эротично!

 
 
 
 Re: Решаю производную
Сообщение27.11.2013, 10:17 

(Оффтоп)

provincialka в сообщении #793269 писал(а):
Ну, а если подумать... Где взять, откуда, при чем тут "взятие"?...

Это явно мужской сленг, взять Казань например)
Когда-то давным давно большинство изучающих математику наверно были мужчинами, а интегралы были трудными, вот и приходилось их брать приступом)))

 
 
 
 Re: Решаю производную
Сообщение27.11.2013, 10:35 
Аватара пользователя

(Оффтоп)

Извините что назвал так тему, поспешил. :oops:


Не могли бы Вы проверить,
Задание - вычислить производную функции $f(x)$ в точке $x_{0}$ и написать уравнение касательной.
$f(x) = - x^{2} + 4x - 5, x_{0} = 3$

Решение:
1. Точка $x_0$ нам дана.
2. Найдем значение функции.
$f(x_{0}) = f(-x^{2} + 4x - 5) = -3^{2} + 4 \cdot 3 - 5 = -9 + 12 - 5 = -2 $

3. Найдем производную.
$f(x)' = (- x^{2} + 4x - 5)' = -2x + 4 $

4. Подставим в полученную производную $x_{0}$
$f(x)' = -2 \cdot 3 + 4 = -2$

5. В итоге получаем:
$y = -2 \cdot (x - 3)  -2 = -2x + 6  -2 = -2x + 4 $
Ответ: $y = -2x + 4$ - Уравнение касательной.

Заранее благодарен вам за потраченное время!

 
 
 
 Re: Решаю производную
Сообщение27.11.2013, 11:10 
Аватара пользователя
Проверил - правильно, только напрягают такие вот сочетания $+-2$ - тут бы плюсик убрать или на крайняк скобочки поставить.

 
 
 
 Re: Решаю производную
Сообщение27.11.2013, 11:19 
Аватара пользователя
bot
Спасибо, подправил, видимо когда переписывал забыл убрать $+$

 
 
 
 Re: Решаю производную
Сообщение28.11.2013, 22:25 
Аватара пользователя
Проверьте пожалуйста ещё одну производную :)
Делаю контрольную к сессии, учусь на заочной форме.
Вычислить производную функции $f(x)$
$ f(x) = x^{3} e^{-2x}$

$x' = (x^{3})'\cdot e^{-2x} + x^{3} \cdot (e^{-2x})' =$

$x' = 3x^{2} \cdot e^-2x + x^{3} \cdot e^{-2x} \cdot (-2x)' =$

$x = 3x^{2} \cdot e^-2x + x^{3} \cdot e^{-2x} \cdot (-2) =$

$x =e^{-2x} \cdot (3x^{2} + x^{3} -2) =$

$x = (3x^{2} + x^{3} - 2) \cdot e^{-2x}$

 
 
 
 Re: Решаю производную
Сообщение28.11.2013, 23:11 
Аватара пользователя
$x^3\cdot(-2)=x^3-2$ ??
Третья и четвертая строчки.

 
 
 
 Re: Решаю производную
Сообщение28.11.2013, 23:16 
Аватара пользователя
Dan B-Yallay
$ -2x^{3}$
$e^{-2x} \cdot (3x^{2} - 2x^{3})$?
Извините, но я вас не понял.

 
 
 
 Re: Решаю производную
Сообщение28.11.2013, 23:29 
Аватара пользователя
Сколько у вас слагаемых в третьей строчке?

Или раскройте скобки в четвертой строчке и сравните с третьей.

-- Чт ноя 28, 2013 14:44:53 --

jijidesign в сообщении #794031 писал(а):
$e^{-2x} \cdot (3x^{2} - 2x^{3})$?
Вот он правильный ответ. А не то что написали сначала.

 
 
 
 Re: Решаю производную
Сообщение29.11.2013, 10:43 
Аватара пользователя
Dan B-Yallay
Прощу прощения, вчера хотел ответить о том, что это лично моя "тупость", но не успел. При вчерашнем прочтение вашего сообщения, совсем подумал о другом :)
Спасибо за потраченное время.

 
 
 
 Re: Решаю производную
Сообщение02.12.2013, 12:32 
Аватара пользователя
Здравствуйте. Снова я, осталась последняя и самая нудная производная - высшего порядка. :)
Задание: Вычислить производную третьего порядка функций. $y = x^{2}\sin{(5x-3)} $
Нахождение производной первого порядка.

$y' = (x^{2})' \cdot \sin{(5x-3)} + x^{2} \cdot (\sin{(5x-3)})' =$

$2x \sin{(5x-3)} + x^{2} (\cos{(5x-3)} \cdot (5x-3)') = $

$ 2x\sin{(5x-3)} + 5x^{2}\cos{(5x-3)} = $

$ 5x^{2}\cos{(5x-3)} - 2x\sin{(5x-3)} $

Нахождение производной второго порядка.

$ (5x^{2}\cos(3-5x))' - (2x\sin(3-5x))' =  $

$((5x^{2})' \cos(3-5x) + 5x^{2} (\cos(3-5x))') - ((2x)' \sin(3-5x) + 2x (\sin(3-5x))') = $

$(10x \cos(3-5x) + 5x^{2} (-\sin(3-5x) (3-5x)')) - (2\sin(3-5x) + 2x(\cos(3-5x) (3-5x)')) =  $

$ (10x \cos(3-5x) + 5x^{2} (5x\sin(3-5x))) - (2\sin(3-5x) + 2x(-5x\cos(3-5x))) = $

Что-то я заглох со вторым порядком, сам принцип нахождения порядков понятен.
Не могли бы Вы посмотреть, и указать на ошибки.
Заранее благодарен всем!

 
 
 
 Re: Решаю производную
Сообщение02.12.2013, 12:56 
Аватара пользователя
Возьмите на ВольфрамАльфе, да сравните.

 
 
 
 Re: Решаю производную
Сообщение02.12.2013, 15:19 
Аватара пользователя
Общий совет, если вдруг Вас (или нас!) забанили на WolframAlpha: чем проще и яснее обозначения, тем дальше Вы продвинетесь, не запутавшись.

Найдем в общем виде вторую производную произведения двух функций, $p$ (у нас это $x^2$) и $s$ (у нас это синус).
$(ps)'=p's+ps'$
$(ps)''=(p's)'+(ps')'=p''s+2p's'+ps''$ (*)

Обозначим:
$s=\sin(5x-3)$
$c=\cos(5x-3)$
Тогда
$s'=5c$
$c'=-5 s$
$s''=(5c)'=-25 s$
Ещё понадобится
$p'=2x$
$p''=2$

Остается всё подставить в (*) и привести подобные.

 
 
 [ Сообщений: 29 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group