2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Сколько аналогов ротора в R^n
Сообщение20.11.2013, 15:09 
Аватара пользователя
Что является аналогом ротора в $\mathbb{R}^n$?

Ротор в трехмерии это $rot (\vec{u})=\varepsilon_{kij} \partial_i u_j \vec{e}_k$
Неужто аналогом ротора в $\mathbb{R}^n$ является оператор $(n-2)$-порядка $rot (\vec{u})=\varepsilon_{ki_1 ... i_{n-1}j} \partial_{i_1} ... \partial_{i_{n-2}} u_j \vec{e}_k$?
или
в многомерии $\mathbb{R}^n$ аналог ротора наверное:
$d\omega = \partial_{[i} u_{k]} dx_k \wedge dx_l$ - диф. 2-форма соответствующая ротору векторному полю $\vec{u}$,
где $\omega (x) = u_k (x) dx_k$ - диф. 1-форма соответствующая векторному полю $\vec{u}$,
то есть просто антисимметричный тензор второго ранга?
Или
в многомерии много аналогов ротора, оба: и оператор 2- порядка и оператор $n-1$-порядка.
Или
Существуют и другие определения?

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение20.11.2013, 15:14 
А про аналог векторного произведения вопросов нет?

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение20.11.2013, 19:22 
Аватара пользователя
arseniiv в сообщении #790721 писал(а):
А про аналог векторного произведения вопросов нет?
Просветите.

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение20.11.2013, 19:56 
Так я просто спрашивал. Есть, значит. А это же стоит обобщать до ротора.

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение20.11.2013, 20:05 
Аватара пользователя
Обычно тотально вводят как 2-форму, дополнительно оговаривая, что трехмерникам повезло - оне из оной могут соорудить некий симпатичный псевдовектор.

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение20.11.2013, 22:28 
Аватара пользователя
Утундрий в сообщении #790808 писал(а):
Обычно тотально вводят как 2-форму

А как тогда эта форма для $\mathbb{R}^n$ выглядит в сферических координатах (например из http://en.wikipedia.org/wiki/N-sphere) произвольного $n$? Где нибудь это написано?

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение20.11.2013, 22:36 

(Оффтоп)

Попробуйте посмотреть на потолке в полнолуние. Там обычно в это время всякие формулы выписываются сами по себе — вдруг и такая будет… Обычно двух-четырёх попыток хватает.

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение20.11.2013, 23:30 
Аватара пользователя
Divergence
Ну, здрасте, приехали. Рассуждали о 2-форме, а закончили ссылкой на форму объёма! :facepalm:

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение20.11.2013, 23:32 
Аватара пользователя
Divergence
0. Берете вектор(ное поле) $a$.
1. Получаете из него соответствующую 1-форму $\alpha=G(a)$. Имеется в виду соответствие между векторами и 1-формами, которое устанавливает метрический тензор. В компонентах это просто опускание индекса.
2. Берете от 1-формы $\alpha$ внешний дифференциал, получаете 2-форму $\beta=d\alpha$.
3. Можно продвинуться на шаг дальше Утундрия и ротором вектора $a$ считать $(n-2)$-поливектор $c={}^*\beta$, дуальный $2$-форме $\beta$. Помимо случая $n=3$, это целесообразно как минимум для $n=2$.

Вам предлагается каждый шаг записать в компонентах и потом слепить из всех шагов единое выражение. Тренироваться можно на примере сферических координат, $n=3$.

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение20.11.2013, 23:33 
Аватара пользователя
Не надо двигаться на шаг дальше меня. Ротор - это 2-форма. Всегда 2! Даже для стопиццотмильёновтысячемения - это 2-форма!

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение20.11.2013, 23:34 
Аватара пользователя
как взять дифференциал от первой формы?

-- 21.11.2013, 00:35 --

во второй дифференциале один аргумент а во второй форме целых два

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение21.11.2013, 15:45 
Аватара пользователя
Утундрий в сообщении #790917 писал(а):
Divergence
Ну, здрасте, приехали. Рассуждали о 2-форме, а закончили ссылкой на форму объёма! :facepalm:
Может неправильно было написано. Попробую по другому:
Как выглядит эта 2-форма (ротор) в (гипер)сферических координатах, когда в декартовых $x_i$ $i=1,2,...,n$?
Где нибудь это написано явно?

А ссылка http://en.wikipedia.org/wiki/N-sphere дана поскольку там есть раздел Spherical coordinates:
We may define a coordinate system in an n-dimensional Euclidean space
which is analogous to the spherical coordinate system defined for 3-dimensional Euclidean space:
x_1 = r \cos(\phi_1) \,
x_2 = r \sin(\phi_1) \cos(\phi_2) \,
x_3 = r \sin(\phi_1) \sin(\phi_2) \cos(\phi_3) \,
..................
x_{n-1} = r \sin(\phi_1) \cdots \sin(\phi_{n-2}) \cos(\phi_{n-1}) \,
x_n = r \sin(\phi_1) \cdots \sin(\phi_{n-2}) \sin(\phi_{n-1}) \,.

Можно и из для русской википедии:
x_1 = \rho \cdot \sin \alpha_1 \cdot \sin \alpha_2 \cdot \dots \cdot \sin \alpha_{n-1}
x_2 = \rho \cdot \cos \alpha_1 \cdot \sin \alpha_2 \cdot \dots \cdot \sin \alpha_{n-1}
x_3 = \rho \cdot \cos \alpha_2 \cdot \sin \alpha_3 \cdot \dots \cdot \sin \alpha_{n-1}
...................
x_n = \rho \cdot \cos \alpha_{n-1}

Кто нибудь видел источник, где выписана явно 2-форма ротора в каких-либо сферических координатах, сопоставляемых $n$-компонентным декартовым?

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение21.11.2013, 16:21 
Аватара пользователя
Divergence в сообщении #791055 писал(а):
Кто нибудь видел источник, где выписана явно 2-форма ротора в каких-либо сферических координатах, сопоставляемых $n$-компонентным декартовым?
Не надо источника. Это шаг 2 из моего списка. Пусть на входе 1-форма $\alpha=\alpha_i dy^i$. Тогда на выходе 2-форма$$\beta=d\alpha=\frac{\partial \alpha_k}{\partial y^i} \;dy^i\wedge dy^k$$Здесь координаты $y^i$ — это $(r, \varphi_1, ..., \varphi_{n-1})$.
Выражение, как видите, не содержит ничего специфического для сферических координат.

А, так Вы же это выражение и сами приводили:
Divergence в сообщении #790717 писал(а):
$d\omega = \partial_{[i} u_{k]} dx_k \wedge dx_l$
Я обозначил произвольные (в данном случае сферические) координаты через $y^i$, чтобы не путать их с декартовыми $x^i$.

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение21.11.2013, 18:22 
Аватара пользователя
svv в сообщении #791064 писал(а):
Не надо источника. Это шаг 2 из моего списка. Пусть на входе 1-форма $\alpha=\alpha_i dy^i$. Тогда на выходе 2-форма$$\beta=d\alpha=\frac{\partial \alpha_k}{\partial y^i} \;dy^i\wedge dy^k$$Здесь координаты $y^i$ — это $(r, \varphi_1, ..., \varphi_{n-1})$.
Выражение, как видите, не содержит ничего специфического для сферических координат.

Тогда компонентой в трехмерии $ (rot \vec{u})_{\varphi} = \partial  u_r/\partial \theta - \partial u_{\theta}/\partial r $,
что не соответствует обычной записи ротора в трехмерии
$ (rot \vec{u})_{\varphi} = r^{-1}\partial ( r\, u_r)/\partial \theta - \partial u_{\theta}/\partial r $,
см.
http://portal.tpu.ru/SHARED/k/KONVAL/Si ... /va/31.htm
http://en.wikipedia.org/wiki/Del_in_cyl ... oordinates
Ваша формулировка по-моему не учитывает коэффициенты Ламе:
\begin{matrix}H_r = 1; \\ H_\theta = r; \\ H_\varphi = r\sin{\theta}. \end{matrix}

 
 
 
 Re: Сколько аналогов ротора в R^n
Сообщение21.11.2013, 18:38 
Аватара пользователя
Верно. Не учитывает (и не обязана). Здесь компоненты — это коэффициенты разложения формы по базисным формам, а там — это коэффициенты разложения вектора по «физическому» ортонормированному базису. См. пояснение Muninа.

 
 
 [ Сообщений: 26 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group