2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение11.10.2013, 21:32 
К своему удивлению, я узнал, что существует элементарное доказательство ВТФ для $n=3$:

http://www.google.co.il/url?sa=t&rct=j& ... GE&cad=rja

На это доказательство ссылаются, и получается, что оно конкурирует с моим.
Доказательство очень простое, но его концовка кажется мне порочной.
Может я ошибаюсь?

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение11.10.2013, 23:17 
Феликс Шмидель в сообщении #773958 писал(а):
Доказательство очень простое, но его концовка кажется мне порочной.


Давайте сначала обсудим Лемму на которую опирается доказательство, и которая, соответственно, может оказаться ещё более порочной.

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение12.10.2013, 00:22 
Аватара пользователя
Автор из полученного в результате выкладок уравнения
$$h^3  + 3^{3m - 1} u^3  = \left( {h + 3^{m - 1} j} \right)\left[ {\left( {h + 3^{m - 1} j} \right)^2  - 2\cdot3^m uh} \right]$
Заключает, что
$$
\left( { - 3^{m - 1} j} \right)^3  + 3^{3m - 1} u^3  = 0
$
считая, что $h$ независимая переменная, что в корне неверно. Достаточно представить, что мы разбираем конкретный числовой пример.
Правильно
$$\left( { - 3^{m - 1} j} \right)^3  + 3^{3m - 1} u^3  \equiv 0\left( {\bmod h} \right)$
из которого уже ничего не следует.

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение12.10.2013, 00:32 
Подозреваю, что и у Феликса Шмиделя ничего не следует. Вот Эйлеру верить можно - он гений.

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение12.10.2013, 00:50 
Аватара пользователя
ishhan в сообщении #774007 писал(а):
Давайте сначала обсудим Лемму на которую опирается доказательство, и которая, соответственно, может оказаться ещё более порочной.

Лемма верна. Она в любом учебнике по теории чисел есть.


korolev в сообщении #774019 писал(а):
Подозреваю, что и у Феликса Шмиделя ничего не следует. Вот Эйлеру верить можно - он гений.

Эйлер до конца не доказал эту теорему, но его путь был верен и ему оставалось сделать совсем чуть-чуть. В первом доказательстве Феликса Шмидель я огрехов не нашёл, последнее не анализировал.

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение12.10.2013, 07:34 
korolev в сообщении #774019 писал(а):
Подозреваю, что и у Феликса Шмиделя ничего не следует.
А Вы не подозревайте, а возьмите и прочитайте его доказательство.
Цитата:
treating the left hand side of the equation as afunction of h
Да уж ... Впрочем, из названия журнала уже можно понять, что здесь, скорее всего, будет халтура.

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение12.10.2013, 08:52 
Я ошибся: ссылаются на другую статью того же автора в этом журнале:

http://ampublisher.com/September%202010 ... 02010.html

Title: Method of Infinite Descent and proof of Fermat's last theorem for n=3
Authors: R. A. D. Piyadasa
Pages: 181-186


Доказательство начинается так же как в том варианте, который мы обсудили, но затем применяется бесконечный спуск.

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение12.10.2013, 10:19 
И с этим доказательством у меня возникают вопросы.
Давайте посмотрим, что делает автор.

Из равенства:

$g^3-h^3-2 \cdot 3^m ugh-3^{3 m-1} u^3=0$ (13),

он получает:

$g^3-3vwg-v^3-w^3=0$ (14),

полагая: $v^3+w^3=3^{3 m-1} u^3+h^3$, $v w=2 \cdot 3^{m-1} uh$.

Затем, автор доказывает, что уравнение (13) имеет только одно действительное решение: $g=v+w$.

После этого автор пишет: "assume, that $v, w$ are integers" и выводит из этого предположение противоречие.

Что происходит, если $v, w$ не являются целыми, я не понял.

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение12.10.2013, 10:45 
korolev в сообщении #774019 писал(а):
Правильно
$$\left( { - 3^{m - 1} j} \right)^3  + 3^{3m - 1} u^3  \equiv 0\left( {\bmod h} \right)$
из которого уже ничего не следует.

Уважаемый Коровьев!
Ошибка у авторов этой статьи начинается в (23), где они составляют уравнение
$2(x+y-z) =x+y-(z-x)-(z -y) = 2\cdot3^m$(23)
и полностью игнорируют другие делители решения (x,y,z), то есть полные свойства кубов не используются. Это равносильно доказательству, что решение $(x,y,z)$ представлено не составными числами.
nnosipov в сообщении #774049 писал(а):
Да уж ... Впрочем, из названия журнала уже можно понять, что здесь, скорее всего, будет халтура.


Уважаемый nnosipov!
Согласен с Вами, и по той причине, что авторы не указывают источники получения формул (19),(20), (21), хотя аналогичные формулы опубликованы в других источниках, например, в "Сибирском вестнике" №4, 2000 г. стр. 280

-- 12.10.2013, 12:42 --

Коровьев в сообщении #774018 писал(а):
Правильно
$\left( { - 3^{m - 1} j} \right)^3  + 3^{3m - 1} u^3  \equiv 0\left( {\bmod h} \right)$
из которого уже ничего не следует.

Уважаемый Коровьев!
Ошибка у авторов этой статьи начинается в (23), где они составляют уравнение
$2(x+y-z) =x+y-(z-x)-(z -y) = 2\cdot3^m$(23)
и полностью игнорируют другие делители решения (x,y,z), то есть полные свойства кубов не используются. Это равносильно доказательству, что решение $(x,y,z)$ представлено не составными числами.
nnosipov в url=http://dxdy.ru/post774049..html#p774049]в сообщении #774049[/url] писал(а):
писал(а):
Да уж ... Впрочем, из названия журнала уже можно понять, что здесь, скорее всего, будет халтура.


Уважаемый nnosipov!
Согласен с Вами, и по той причине, что авторы не указывают источники получения формул (19),(20), (21), хотя аналогичные формулы опубликованы в других источниках, например, в "Сибирском вестнике" №4, 2000 г. стр. 280

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение12.10.2013, 13:22 
Уважаемый lasta, не могли бы вы скопировать (23) без ошибок?
Кроме этого, объясните, пожалуйста, что значит: "полностью игнорируют другие делители решения (x,y,z), то есть полные свойства кубов не используются. Это равносильно доказательству, что решение $(x,y,z)$ представлено не составными числами"?

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение12.10.2013, 14:31 
Аватара пользователя
Феликс Шмидель в сообщении #774065 писал(а):
полагая:$v^3+w^3=3^{3 m-1} u^3+h^3$

До меня не доходит, откуда автор получил это соотношение? :shock:

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение12.10.2013, 16:39 
Коровьев в сообщении #774127 писал(а):
Феликс Шмидель в сообщении #774065 писал(а):
полагая:$v^3+w^3=3^{3 m-1} u^3+h^3$

До меня не доходит, откуда автор получил это соотношение? :shock:


Он ниоткуда его не получил.
Просто взял произвольные действительные числа $v$ и $w$, которые удовлетворяют этому (и второму) соотношению.

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение12.10.2013, 22:26 
Аватара пользователя
Феликс Шмидель в сообщении #774185 писал(а):
Он ниоткуда его не получил.
Просто взял произвольные действительные числа $v$ и $w$, которые удовлетворяют этому (и второму) соотношению.

Понятно. Только не понятно, с какой стати автор решил, что такие числа найдутся? Дальше смотреть нет смысла.

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение13.10.2013, 07:42 
Феликс Шмидель в сообщении #774103 писал(а):
не могли бы вы скопировать (23) без ошибок?
Кроме этого, объясните, пожалуйста, что значит: "полностью игнорируют другие делители решения (x,y,z), то есть полные свойства кубов не используются.

Уважаемый Феликс Шмидель!

Спасибо! Действительно не скопировал до конца. Правильно
$2(x+y-z) =x+y-(z-x) - (z -y ) = 2\cdot3^m ugh$ (23)
1.Выражение $(x+y-z)$ не представляет однозначно решение уравнения Ферма, поэтому одни и те же разности
(z-x) и (z-y) могут составляться различными решениями. Действительно, пусть
$x_1=x_0-d, z_1=(z_0-d)$, тогда
$(z_0-d)-(x_0-d)= (z_0 -x_0)=(z_1-x_1)$ и
$(z_0-d)-(y_0-d)= (z_0 -y_0)=(z_1-y_1)$. Тогда
$(x_0+y_0-z_0)=(y_0-(z_1-x_1))=(x_0-(z_1-y_1))$
2.Не используют полные свойства кубов, так как в базовом уравнении присутствуют только сумма и разности оснований кубов. Отсутствует делитель (известный трехчлен). А, учитывая 1., (неоднозначное представление решения УФ указанным выражением) этим уравнением можно доказать что угодно.

 
 
 
 Re: Обсудим доказательство ВТФ для n=3 в канадском журнале
Сообщение13.10.2013, 10:37 
Уважаемый lasta!

Я прошу Вас учесть, что кроме (23), автор использует ещё и то, что $x+y$ является кубом, и другие условия.

 
 
 [ Сообщений: 43 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group