2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Можно ли решить аналитически
Сообщение30.09.2013, 15:17 
Привет всем!
Можно ли найти аналитическое решение такого уравнения $x \ln(ax)=b; a,b - \operatorname{const}$

 
 
 
 Re: Можно ли решить аналитически
Сообщение30.09.2013, 15:21 
Наберите в какой-нибудь системе компьютерной алгебры (Maple, например) и посмотрите.

 
 
 
 Re: Можно ли решить аналитически
Сообщение30.09.2013, 17:59 
Решение будет выражаться через W-функцию. Прочитайте и можете без всяких Maple найти решение.

 
 
 
 Re: Можно ли решить аналитически
Сообщение30.09.2013, 18:16 
Maple в данном случае --- просто удобный справочник. ТС следовало бы самому решать подобные вопросы, это не требует ни особых знаний, ни затрат времени.

 
 
 
 Re: Можно ли решить аналитически
Сообщение30.09.2013, 20:48 
Спасибо за ответы! В википедии на русском есть приближение функции Ламберта, но там написано, что отличие может быть в 10%. Кто нибудь знает, есть ли более точные приближение функции Ламберта?

 
 
 
 Re: Можно ли решить аналитически
Сообщение30.09.2013, 20:52 
А что вы делаете с решениями этого уравнения? Может, имеет смысл именно что работать целиком внутри той же Maple, не заботясь о реализации вычисления всяких функций.

 
 
 
 Re: Можно ли решить аналитически
Сообщение30.09.2013, 21:55 
arseniiv в сообщении #769472 писал(а):
А что вы делаете с решениями этого уравнения? Может, имеет смысл именно что работать целиком внутри той же Maple, не заботясь о реализации вычисления всяких функций.


Разрабатывается некоторая модель, в которой аналитики должно быть максимум насколько это возможно.

 
 
 
 Re: Можно ли решить аналитически
Сообщение30.09.2013, 22:02 
alexey007
И в чём же проблема использования спецфункций? Чем они хуже?

 
 
 
 Re: Можно ли решить аналитически
Сообщение30.09.2013, 22:05 
Аватара пользователя
Кнопки такой нет у человека.

 
 
 
 Re: Можно ли решить аналитически
Сообщение30.09.2013, 22:22 
alexey007 в сообщении #769487 писал(а):
Разрабатывается некоторая модель
Это, кстати, всё равно что не сказать ничего. Из таких слов нельзя ничего вывести! :roll:

(2 Ms-dos4.)

Ms-dos4 в сообщении #769489 писал(а):
И в чём же проблема использования спецфункций?
Ну как же, это же страшный и тёмный лес, не то что Элементарные Сады! Несмотря на то что там уже столько натоптали, что лес остался в прошлом, хотя слухи не пропали. Вот никто и не ходит туда из боязни.

 
 
 
 Re: Можно ли решить аналитически
Сообщение30.09.2013, 22:29 
arseniiv

(Оффтоп)

Так спецфункции только по названию "спец-". По сути ничем не отличаются от элементарных.

 
 
 
 Re: Можно ли решить аналитически
Сообщение30.09.2013, 22:40 

(2 Ms-dos4.)

Но их и их свойства мало кто знает! (Я вот тоже. :oops: Без Mathematica если только с $W$ и немного с гаммой управлюсь, хотя элементарность решений уравнений обычно и так видится.) Не знаю, где и сколько есть курсов по ним, но в итоге не видно, чтобы знания о них были распространены достаточно — везде там, где они оказываются нужны.

 
 
 
 Re: Можно ли решить аналитически
Сообщение01.10.2013, 00:26 
Во-первых, можно сделать замену $t=ax$ и избавиться от одной константы. По сути, требуется найти в аналитическом виде приближение к функции обратной $f(t)=t\ln{t}$

Во-вторых, нужно знать хотя бы критерий приближения, диапазон значений $t$. Особенно, если $t$ может близиться к нулю или бесконечности.

После этого можно что-нибудь предложить.

 
 
 
 Re: Можно ли решить аналитически
Сообщение15.04.2014, 19:15 
Аватара пользователя
Ms-dos4 в сообщении #769505 писал(а):
Так спецфункции только по названию "спец-". По сути ничем не отличаются от элементарных.

Отличия количественные. Спецфункций больше. У каждой спецфункции (точнее, у каждого семейства) своя специфика. Какие-то ортогональные, какие-то неортогональные. Какие-то от одной переменной (ещё надо уточнить, действительной или комплексной), какие-то от нескольких, или параметризованы. Возникают в очень разных задачах. И на изучение специфики каждого отдельного семейства надо потратить столько же пото́в, сколько было потрачено, скажем, на логарифмы и тригонометрию. Возникает резонный вопрос: а нам оно надо? А в большинстве случаев, с этими спецфункциями мы никогда в жизни и не встретимся (большинство из нас), и отсюда ответ: нафиг не надо.

Ну, скажем, физику полезно быть в курсе о спецфункциях, возникающих при решении линейных ДУЧП (уравнений матфизики) в ряде простых модельных задач. Это функции Бесселя, сферические/шаровые функции (не очень-то "спец"), полиномы Лагерра, Лежандра, Эрмита, функции Эйри. А вот функции Ламберта, Римана, Вейерштрасса - ну зачем они ему нужны?..

А кто бы по этому "истоптанному страшному лесу" провёл именно указатели "это нужно - это не нужно" - таких смельчаков я что-то не видел.

 
 
 
 Re: Можно ли решить аналитически
Сообщение15.04.2014, 19:42 
Аватара пользователя
Я давно уж читал небольшую книжечку преподавателя математики физикам. Забыл автора, но из авторитетов. Он беседовал со своим другом, и тот ему сказал: "Ну ты им всё без доказательств, конечно? Главное, чтобы спецфункции знали." Вроде бы наивысшей математической аттестацией для физика когда-то было одобрительно-покровительственное: "Спецфункции знает". Автор же гонял студентов именно по доказательствам :-)

 
 
 [ Сообщений: 17 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group