2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Инварианты матрицы 2 на 2 с комплексными коэффициентами
Сообщение06.03.2012, 15:41 
Аватара пользователя
Рассмотрим множество матриц 2 на 2 с комплексными коэффициентами. Будем считать, что матрица A подобна матрице B (A ~ B), если
$T^{ - 1} AT = B$.
Тогда у любой пары подобных матриц совпадают след (сумма диагональных элементов) и определитель. Есть ли еще инварианты?

 
 
 
 Re: Инварианты матрицы 2 на 2 с комплексными коэффициентами
Сообщение06.03.2012, 16:09 
Аватара пользователя
Инварианты (у любой матрицы, не только 2 на 2) - это все коэффициенты характеристического полинома, и то, что выражается через них. Теперь рассмотрите свой вопрос с учётом этого знания.

 
 
 
 Re: Инварианты матрицы 2 на 2 с комплексными коэффициентами
Сообщение06.03.2012, 20:53 
Аватара пользователя
Но если у двух матриц 2 на 2 совпадает след и определитель, ещё не факт, что они подобны. Что как-бы намекает на существование ещё одного (допустим, целочисленного) инварианта, в качестве которого можно взять, например, количество жордановых клеток.

 
 
 
 Re: Инварианты матрицы 2 на 2 с комплексными коэффициентами
Сообщение07.03.2012, 12:26 
Аватара пользователя
Максимум булевозначный. "Матрица простой структуры?" И если у обеих true, то подобны. И если у обеих false тоже.

 
 
 
 Re: Инварианты матрицы 2 на 2 с комплексными коэффициентами
Сообщение07.03.2012, 16:43 
Аватара пользователя
Подробности см. в А.И. Мальцев,Основы линейной алгебры

След и определитель это слишком мало - их совпадение не гарантирует даже совпадения наборов собственных чисел. Если даже совпадут наборы собственных чисел вместе с их кратностями это тоже не гарантирует подобия.
Upd. В случае симметрических матриц гарантирует, то есть в этом случае в качестве единственного инварианта можно взять характеристический многочлен.

В общем случае две матрицы подобны тогда и только тогда, когда совпадают их жордановы формы с точностью до перестановок клеток.
Можно сформулировать это же в терминах элементарных делителей характеристических матриц. Наборы таких элементарных делителей и будет системой инвариантов, гарантирующих подобие.

 
 
 
 Re: Инварианты матрицы 2 на 2 с комплексными коэффициентами
Сообщение07.03.2012, 17:17 
Аватара пользователя
Э, это как?
Цитата:
След и определитель это слишком мало - их совпадение не гарантирует даже совпадения наборов собственных чисел.

След это сумма с.ч., определитель - произведение. Поскольку матрица 2х2, то собственные значения определяются однозначно. Жорданова клетка либо одна, либо матрица простой структуры.

 
 
 
 Re: Инварианты матрицы 2 на 2 с комплексными коэффициентами
Сообщение07.03.2012, 18:04 
Аватара пользователя
Пропустил, что речь идёт всего лишь о $2\times2$ матрицах. В таком случае характеристический многочлен по следу и определителю определяется однозначно. Если дискриминант ненулевой, то жордановых клеток точно две, а если ноль, то
Евгений Машеров в сообщении #546064 писал(а):
Жорданова клетка либо одна, либо матрица простой структуры.

и во втором случае она просто скалярная.
Таким образом, ... однако стоп - хоть что-нибудь надо и ТС оставить.

 
 
 
 Re: Инварианты матрицы 2 на 2 с комплексными коэффициентами
Сообщение15.01.2013, 18:00 
Аватара пользователя
Хорошо, а если мы за третий инвариант возьмем булевозначный (симметричность матрицы). Тогда эти три инварианта полностью характеризуют класс эквивалентных матриц?

 
 
 
 Re: Инварианты матрицы 2 на 2 с комплексными коэффициентами
Сообщение15.01.2013, 18:09 
Аватара пользователя
DLL в сообщении #672002 писал(а):
Хорошо, а если мы за третий инвариант возьмем булевозначный (симметричность матрицы). Тогда эти три инварианта полностью характеризуют класс эквивалентных матриц?


В данном случае в качестве булевозначного инварианта нужно брать "существуют два линейно независимых собственных вектора".

Из самосопряженности (симметричность над $\mathbb C$ здесь мало осмысленна) это следует, но не наоборот.

Надо, правда, еще аккуратно сказать, какие комбинации инвариантов реализуются, а какие нет, но это оставим Вам.

-- 15.01.2013, 19:10 --

А, сказали же выше. И "матрица простой структуры" --- это, видимо, то же самое.

 
 
 
 Re: Инварианты матрицы 2 на 2 с комплексными коэффициентами
Сообщение15.01.2013, 18:19 
Аватара пользователя
Цитата:
В данном случае в качестве булевозначного инварианта нужно брать "существуют два линейно независимых собственных вектора".

В отличие от следа и определителя, он не считается так просто.
Хочется, чтобы инвариант был более обозримый...

 
 
 
 Re: Инварианты матрицы 2 на 2 с комплексными коэффициентами
Сообщение15.01.2013, 18:32 
Аватара пользователя
DLL в сообщении #672011 писал(а):
В отличие от следа и определителя, он не считается так просто.
Хочется, чтобы инвариант был более обозримый...


Ну он как бы не очень устойчив (меняется почти при любом сколь угодно малом возмущении), поэтому и не может считаться просто.

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group