2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Неприводимость многочлена над Q
Сообщение27.12.2012, 07:05 
Аватара пользователя
Нужно срочно разобраться с проблемой, связанной с доказательством неприводимости многочлена
$f(x) = x^4 + 5x^3 - 3x^2 - 5x + 1$.
Прилепить признак Эйзенштейна не выходит из-за того, что не получается подобрать числа, такие чтобы f(x+k) имел коэффициенты, удовлетворяющие признаку Эйзенштейна.
Думалось пробовать смотреть значения на точках (вроде точек 0, 1, -1) и говорить, что если многочлен приводим, то лишь либо на два неприводимых тричлена, либо на четыре одночлена. И тогда смотреть один из трехчленов и пытаться его воссоздать по интерполяционной формуле. Но ведь его, в принципе, не должно вроде как существовать с рациональными коэффициентами. И я не уверен, что откидывание не подошедших вариантов гарантирует отсутствие других...
Подскажите, что можно сделать с этим многочленом?

 
 
 
 Re: Неприводимость многочлена над Q
Сообщение27.12.2012, 07:17 
А просто методом неопределенных коэффициентов пробовали проверять? У Вас ведь сразу надо лишь проверять разложение на 2 квадратных трехчлена, а коэффициенты у $f(x)$ очень хорошие для перебора.

 
 
 
 Re: Неприводимость многочлена над Q
Сообщение27.12.2012, 07:26 
Аватара пользователя
Sonic86, так там ведь неприводимость над $Q$ нужна. Меня именно это и смущало. Даже если мы начнем перебирать, просто свободные коэффициенты тричленов могут быть как $1$ и $-1$, так и с долей вероятности $\frac{1}{2}$ и $2$ и т.д.
Или я все-таки не прав?

-- 27.12.2012, 06:32 --

Или тут применяется теорема, что если $f(x) \in Z[x]$ и неприводим над $Z$, то неприводим и над $Q$?

 
 
 
 Re: Неприводимость многочлена над Q
Сообщение27.12.2012, 07:39 
Nikys в сообщении #664285 писал(а):
Или тут применяется теорема, что если $f(x) \in Z[x]$ и неприводим над $Z$, то неприводим и над $Q$?
Да, эта теорема (ее и доказать легко)

 
 
 
 Re: Неприводимость многочлена над Q
Сообщение27.12.2012, 07:49 
Аватара пользователя
Тогда задача действительно детская...Бррр, мозги отключаются перед экзаменом совсем...Что ж, спасибо, вопрос снят с рассмотрения. Действительно, легко выводится, что должна быть сумма коэффициентов при $x$ в трехчленах равная $5$, а произведение - $-1$, что невозможно в целых числах, откуда все и вытекает.
Спасибо, выручили)

 
 
 
 Re: Неприводимость многочлена над Q
Сообщение27.12.2012, 09:34 
Nikys в сообщении #664285 писал(а):
Или тут применяется теорема, что если $f(x) \in Z[x]$ и неприводим над $Z$, то неприводим и над $Q$?
Без этой неочевидной теоремы (известной как лемма Гаусса) здесь можно обойтись, найдя все вещественные корни многочлена $f(x)$ (это числа $(-5+r \pm \sqrt{70-10r})/4$, где $r=\pm \sqrt{29}$) и проверив, что любая пара из них даёт в сумме иррациональное число.

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group