1. Пусть

- метризуемое ТВП и

- инвариантная метрика. Тогда пусть

, имеем

. Положим, что

сходится к нулю. Тогда для всякого

существует

, такое что для всех

имеем

, значит

. Определим последовательность

, положив при этом что не существует такого

начиная с которого последовательность была бы нулевой(это гарантирует, что

- бесконечно большая). Теперь кладем, что

и то что все

- определены. Определим для

. Тем самым показано, что последовательность

сходится к нулю, а

- бесконечно большая. Это то, что Вы хотели?