![$a \in \left[\frac {1}{11};\frac{1}{10}\right]$ $a \in \left[\frac {1}{11};\frac{1}{10}\right]$](https://dxdy-03.korotkov.co.uk/f/e/4/6/e467f51b53daab94a4dce3f683ec00a382.png)
?
Если

, то контрпримером служат два отрезка по

и ещё 9 отрезков по

Докажем, что при

из любых трёх получившихся отрезков можно составить треугольник.
Пусть это не так. Тогда сумма двух наименьших отрезков не больше наибольшего. Но наибольший отрезок короче, чем

.
Пусть длины получившихся 11 отрезков равны

Так как

, сумма всех 11 отрезков меньше единички.
Пришли к противоречию.
Как-то так...