2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Элементарные преобразования матрицы
Сообщение04.04.2012, 18:07 
Дана матрица $2\times 3$ с целыми числами.
Можно ли ее элементарными преобразованиями привести к виду, когда в ячейках с номерами $(1,2)$ и $(2,1)$ стоят нули (т.е. приводима к диагональному виду)?
А если матрица может быть дополнена до квадратной так, что ее определитель равен 1?
Что-то не допираю :-(

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение04.04.2012, 18:09 
Аватара пользователя
А что считается элементарным преобразованием? Домножение строки или столбца на число, вычитание одной строки или столбца из другой (другого) или что-то ещё? Или я что-то лишнее привнёс?

Если ничего не привнёс, то вычитайте третий столбец из первого и второго поочерёдно, и всё у Вас получится.

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение04.04.2012, 18:11 
Профессор Снэйп в сообщении #556180 писал(а):
А что считается элементарным преобразованием? Домножение строки или столбца на число, вычитание одной строки или столбца из другой (другого) иличто-то ещё?
Только сложение или вычитание одной строки с другой. Еще можно строку умножать на $-1$.

Профессор Снэйп в сообщении #556180 писал(а):
Если ничего не привнёс, то вычитайте третий столбец из первого и второго поочерёдно, и всё у Вас получится.
Вот как раз получается, что нельзя. Вычитая одну строку из другой (алгоритмом Евклида по элементам 1-го столбца) я могу получить один нулик. А второй нулик дальше необязателен (например $\binom{5 \ 1 \ 1}{0 \ 2 \ 3}$), но можно выбрать другой столбец и к нему применять алгоритм Евклида...

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение04.04.2012, 18:15 
Аватара пользователя
Sonic86 в сообщении #556181 писал(а):
Только сложение или вычитание одной строки с другой

Ну, в общем-то можно.

Преположим, что все числа матрицы попарно взаимно просты. Последовательным вычитанием строк друг из друга добейтесь того, чтобы $x_{1,3}$ было равно $1$. Далее вычитанием строк сделайте $x_{2,3} = 1$. Далее третий столбец из первого и второго...

-- Ср апр 04, 2012 21:16:45 --

Если взаимной простоты нет, то тоже можно, только муторно объяснять. Но принцип тот же.

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение04.04.2012, 18:18 
Профессор Снэйп в сообщении #556186 писал(а):
Далее третий столбец из первого и второго...
Ну нельзя же столбцы складывать :-) только строки.

Профессор Снэйп в сообщении #556186 писал(а):
Если взаимной простоты нет
Вот, кстати, сразу пример, что числа могут быть не взаимно просты: $\binom{2 \ 3 \ 5}{4 \ 9 \ 20}\sim\binom{2 \ 0 \ -5}{0 \ 3 \ 10}$.

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение04.04.2012, 18:19 
Аватара пользователя
Sonic86 в сообщении #556187 писал(а):
только строки.

А-а-а... Тогда, конечно, нельзя!

Непонятно, зачем Вам матрица $2 \times 3$, если третий столбец ни на что не влияет.

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение04.04.2012, 18:21 
Профессор Снэйп в сообщении #556190 писал(а):
Непонятно, зачем Вам матрица $2 \times 3$, если третий столбец ни на что не влияет.
Я пока не знаю, вообще на самом деле есть условие
Sonic86 в сообщении #556178 писал(а):
А если матрица может быть дополнена до квадратной так, что ее определитель равен 1?
т.е. тут уже 3-й столбец играет роль. Я просто на всякий случай еще и в общем виде спрашиваю, без этого условия.

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение04.04.2012, 18:49 
Аватара пользователя
Смущает размер $2\times 3$. С квадратными понятно - ровно тот же алгоритм приведения к канонической диагональной форме, что и для $\lambda$-матриц. Или дополнительно допускается вычёркивание нулевой строки (столбца)?

Э.п. я полагаю, обычные?
а) умножение строки (столбца) на -1.
б) прибавление к строке (столбцу) другой строки (столбца) с произвольным целым коэффициентом.

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение04.04.2012, 18:59 
bot в сообщении #556212 писал(а):
Э.п. я полагаю, обычные?
а) умножение строки (столбца) на -1.
б) прибавление к строке (столбцу) другой строки (столбца) с произвольным целым коэффициентом.
Нет, только так:
а) умножение строки на -1.
б) прибавление к строке другой строки с произвольным целым коэффициентом.

bot в сообщении #556212 писал(а):
Смущает размер $2\times 3$. С квадратными понятно - ровно тот же алгоритм приведения к канонической диагональной форме, что и для $\lambda$-матриц. Или дополнительно допускается вычёркивание нулевой строки (столбца)?
Размер в принципе вообще любой. Нулевые строки вычеркивать нельзя. Но здесь это все несущественно.

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение04.04.2012, 20:25 
Аватара пользователя
Вот это и непонятно - что такое диагональная неквадратная матрица? Если э.п. только строк, то и квадратную не всякую привести к диагональной можно.
Долго не думал, но вот к примеру такую $\begin{pmatrix}1&2\\ 2&0\end{pmatrix}$ кажется не получится.

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение04.04.2012, 20:32 
bot в сообщении #556267 писал(а):
Долго не думал, но вот к примеру такую $\begin{pmatrix}1&2\\ 2&0\end{pmatrix}$ кажется не получится.
Ага :-) Только это $2\times 2$, а надо $2\times 3$.

bot в сообщении #556267 писал(а):
Вот это и непонятно - что такое диагональная неквадратная матрица? Если э.п. только строк, то и квадратную не всякую привести к диагональной можно.
Я хочу такими ЭП $\binom{a \ b \ c}{d \ e \ f}$ привести к $\binom{x \ 0 \ y}{0 \ z \ w}$ (ее первая $2\times 2$ подматрица диагональна). Либо в общем случае, либо когда данная матрица дополняется 3-й строкой до матрицы $3\times 3$ с определителем 1 (не знаю, какой вариант правильней).

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение04.04.2012, 22:48 
Аватара пользователя
ЭП строк матрицы, как известно, можно представить в виде умножения этой матрицы на некоторую матрицу (матрицу элементарного преобразования) слева. Например, умножение слева на матрицу
$$
\left(
\begin{array}{cc}
1 & 0\\
10 & 1
\end{array}\right)
$$
равнозначно прибавлению ко второй строке первой строки умноженной на $10$.
Последовательное применение ЭП равнозначно умножению слева на некоторое произведение матриц ЭП. Все матрицы ЭП имеют определитель равный $\pm 1$. Значит их произведения тоже имеют определитель равный $\pm 1$. Верно и обратное: целочисленная матрица с определителем $\pm 1$ является произведением матриц ЭП.

Из сказанного следует решение вашего вопроса. Матрица
$$
\left(
\begin{array}{ccc}
1 & 1 & 0\\
0 & 2 & 1
\end{array}\right)
$$
не может быть приведена ЭП строк к виду (это, как раз, следует из сказанного выше о том, что последовательность ЭП строк равнозначно умножению слева на матрицу с определителем $\pm 1$)
$$
\left(
\begin{array}{ccc}
x & 0 & u\\
0 & y & v
\end{array}\right)
$$
При этом она дополняется до матрицы с определителем $1$:
$$
\left(
\begin{array}{ccc}
1 & 1 & 0\\
0 & 2 & 1\\
0 & -1 & 0
\end{array}\right)
$$

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение05.04.2012, 06:27 
lofar, извините, я все-таки неправильно сформулировал :-(, порядок столбцов мне не важен.
Т.е. давайте допустим в качестве ЭП еще и перестановки столбцов. Если так, то матрица $\left( \begin{array}{ccc} 1 & 1 & 0\\ 0 & 2 & 1 \end{array}\right)$ перестановкой столбцов приводима к искомому виду.

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение05.04.2012, 17:00 
Sonic86 в сообщении #556178 писал(а):
Можно ли ее элементарными преобразованиями привести к виду, когда в ячейках с номерами $(1,2)$ и $(2,1)$ стоят нули (т.е. приводима к диагональному виду)?

Нет, нельзя. Контрпример:

$\left(\begin{array}{ccc}1 & 3 & 5 \\ 2 & 1 & 1\end{array}\right)$,

Дополняемая до квадратной с единичным определителем:

$\left(\begin{array}{ccc}1 & 3 & 5 \\ 2 & 1 & 1 \\ 0 & -1 & -2\end{array}\right)$.

 
 
 
 Re: Элементарные преобразования матрицы
Сообщение05.04.2012, 18:05 
Ммм, фигово...
Sender, спасибо :-)

 
 
 [ Сообщений: 15 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group