Существует ли оракул для одной функции, который позволяет вычислять все невычислимые функции, или класс невычислимых функций в этом смысле "больше", и одним оракулом не обойтись?
Второе. Из элементарных теоретико-мощностных соображений. Существует континуум различных функций из
в
, а для каждолго фиксированного оракула множество функций, вычислимых с этим оракулом, счётно
Например, сумма литературных текстов, написанных человечеством
Она состоит из конечного числа букв. А оракул для невычислимой функции знает ответы о её значениях на бесконечном числе аргументов.
Хотя если принять за аксиому, что человечество будет существовать вечно и при этом постоянно порождать новые тексты, то... может быть. Если рассматривать все тексты, как уже написанные, так и те, что будут написаны потом. Не вижу аргументов ни за, ни против.
И наконец, даже если мы смастерим с помощью квантовой механики оракула, выдающего невычислимую функцию, откуда мы узнаем, какую именно он выдаёт функцию?
А вот это - самый важный и самый принципиальный вопрос.
Чисто гипотетически я представляю возможной ситуацию, когда в будущем появится физическая теория, описывающая поведение некоторых физических объектов на манер следующей фразы: Если элементарная частица сфинксон (пока что не открытая) сталкивается с электроном энергии
эВ и при этом машина Тьюринга с номером
останавливается через конечное время, начав работать с пустой лентой, то она распадается на два ответсона (ещё одна пока не открытая частица), в противном случае распада не происходит. В этом случае, варьируя энергию электрона и регистируя факт распада, мы будем иметь оракул для невычислимого множества - проблемы остановки.
Возникает вопрос: возможно ли, что законы физики вдруг примут такую странную форму. Не вижу причин, почему это невозможно, хотя опять же не уверен, что их реально нет. Что мы хотим от физического закона. Чтобы он формулировался на языке математики и допускал экспериментальную проверку (с гарантированной возможностью экспериментального опровержения в соответствии с принципом фальсификации). Первое условие выполнено, хотя и непривычным образом; мы привыкли записывать физические законы на языке непрерывной математики и дифференциальных уравнений, а тут закон записан на языке дискретной математики. Но всё же математики! Далее... Множество таких
, при которых происходит событие распада, перечислимо, но не вычислимо. То есть мы можем перечислять
, при которых должен происходить распад, проверять для этих
наличие распада экспериментально и в этом пункте теория поддаётся многократному экспериментальному подтверждению, если она верна, и экспериментальному опровержению, если нет. Насчёт другого пункта сложнее. Множество значений
, при которых распада не будет, нельзя не то что вычислить, но даже перечислить. И тут получается, что если мы обнаружили отсутствие распада при некотором конкретном
, то мы не имеем возможности интерпретировать результат в рамках теории. Поскольку мы, имея конкретное
, которое ещё не перечислено в списке кодов останавливающихся программ, каждый раз стоим перед альтернативой: то ли уже остановить процесс перечисления и признать, что
не перечислится никогда, то ли подождать ещё чуть-чуть и обнаружить, что
всё же перечисляется, хотя и не сразу. Алгоритмического решения этой альтернативы нет. Если мы при каком-то
фиксируем отсутствие распада, то мы должны запустить перечисление и ждать. Если
когда-нибудь перечислится, этот факт опровергнет теорию, но если теория всё же верна, то её экспериментальное подстверждение для этого
невозможно. То есть фальцифицируемость есть "по полной программе", а экспериментальное подтверждение возможно лишь когда теория предсказывает распад.
Но я считаю, что всё нормально и теория вполне может быть названа физической и научной. Ибо она поддаётся экспериментальному опровержению в случае своей несостоятельности. Просто она предсказывает поведение сфинксона таким законом, в котором фигурирует невычислимая функция, из-за чего мы, даже зная закон, всё же не всегда можем предсказать результаты эксперимента. Но ведь если такая теория появится, то не с бухты-барахты и не на пустом месте. Скорее всего, у нас будут какие-то причины считать её истинной. И мы вправе будем продолжать доверять теории до тех пор, пока она вдруг не окажется опровергнутой (если сие, конечно, произойдёт).
Наконец, тот факт, что внутри элементарной частицы современная физика прячет целый набор целочисленных параметров (заряд, спин и т. п.) давно уже никого не удивляет. Так что если когда-нибудь дотеоретизируемся до того, что спрячем внутрь частицы бесконечную ленту машины Тьюринга, разбитую на дискретные ячейки), то это станет дальнейшим продолжением имеющейся тенденции и не будет выглядеть столь уж неправдоподобно.
-- Пн фев 13, 2012 07:43:16 --Зато если человечеству когда-нибудь удастся заполучить в руки физический прибор, вычисляющий проблему остановки, то это будет иметь много разных интересных последствий:
1) Кардинальное изменение облика всей математики, в том числе и смена методологии. Сегодня работа математика заключается в том, что он выдвигает утверждения-гипотезы и ищет их доказательства (а когда находит, начинает называть гипотезу теоремой). Если же у нас будет оракул, то думать и искать доказательства станет не нужным. Достаточно будет просто спросить у оракула, существует доказательство или нет :)
Впрочем, математика после такого форс-мажора не только не выродится, но станет лишь более содержательной. Однако совсем-совсем другой...
2) Если вдруг окажется, что оракул ещё и работает быстро, то большинство вычислений, для которых человечество ныне старается найти как можно более быстрые алгоритмы, станет просто не нужным. Проблема коммивояжера или другая NP-поная проблема, шашки, шахматы, взлом паролей полным перебором сколь угодно большого числа вариантов... Не надо ничего вычислять, просто спрашиваем у оракула и всё. Криптография, конечно, не исчезнет, но будет опять же другой: вместо игры на трудностях в подборе пароля криптосистемы сами станут использовать оракул.
3) Любую естественнонаучную теорию станет возможным мгновенно проверить на внутреннюю логическую непротиворечивость. Которая, хоть и не даст гарантии истинности, всё же сразу станет отбрасывать множество заведомо ненужного хлама.
Если подумать, то можно, наверное, ещё какие-то пункты записать. Представьте себе мир, в котором все компьютеры производят любые вычисления практически мгновенно. Не удивлюсь, если в конечном счёте появится возможность просчитывать турбулентность и точно предсказывать погоду. С учётом того, что вся логистика оптимальна. Во многом люди станут подобны Богам...
Кстати, давно уже мечтаю написать фантастический рассказ на эту тему...
-- Пн фев 13, 2012 07:48:00 --Миф о том, что в квантовой механике основой описания является функция распределения вероятности, расхож среди людей, которым когда-то как-то читали квантовую механику, но с тех пор эти знания толком не задействовались.
Да ну знал я на самом деле, как правильно. Просто опять забыл!
Кстати, тут возникал вопрос о том, что такое идентичные Вселенные. Можно дать такое определение: эти Вселенные, рассматриваемые как квантовомеханические системы, имеют одинаковую функцию плотности вероятности.
-- Пн фев 13, 2012 07:50:22 --Исходный вопрос, если я правильно его понял, эквивалентен вопросу о существовании скрытых переменных. Эта тема в науке много обсуждалась, погуглите.
На первый взгляд казалось бы, что на такой вопрос ответить нельзя, не предлагая конкретных моделей скрытых переменных, но оказывается, что кое-что можно сказать и в общем случае. Посмотрите например, что такое неравенства Белла.
Не из той оперы, совсем не из той!