2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 вырезание синуса из бумаги
Сообщение30.01.2012, 10:23 
У меня есть книжка Г. Штейнгауза "Математический калейдоскоп". На страницах 72-73 рисунки с таким текстом: <<Если обернуть свечу несколько раз листком бумаги, перерезать свечу наклонно острым ножом или бритвой, затем разнять обе половинки свечи и, наконец, развернуть бумагу, то получится кривая линия, которая называется -- синусоида.>>

Не понимаю, как это проделать. Получаются просто треугольные вырезы, никакой синусоиды. Возможно, нужно как-то особо перерезать наклонно, но как?

-- 30.01.2012, 10:29 --

Придумал как экспериментально проверить :D распечатать синусоиду, вырезать по её кромке и, оборачивая вокруг свечи, найти положение, при котором периодичность совпадёт, то есть которое возможно было бы получить изначально одним разрезом. Буду дома, может, попробую. Но всё-таки там, в книжке, на рисунках показано будто просто наклонным разрезанием получают (под углом примерно 60 градусов к оси свечи), без хитростей. :?:

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 10:43 
Аватара пользователя
А мне вот непонятно, как у Вас получились треугольные вырезы.

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 10:50 
Вероятно, при разрезании бумага недостаточно плотно прилегала к поверхности свечи.

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 11:06 
Аватара пользователя
Попробуйте с твёрдой колбасой и очень острым ножом.

-- Пн, 2012-01-30, 12:21 --

Сначала ровно разрезать колбасу наискосок. Сложить как было. И только потом обернуть бумагой, и...

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 12:38 
Аватара пользователя
(Поправляя фуражку прапорщика Ясненько, старшины роты капитана Очевидность):
А свеча - она круглая в сечении была? А то во времена профессора Гуго Штейнгауза ими для освещения пользовались, а теперь всё более декоративные, и разной формы...

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 14:49 
Аватара пользователя
Пусть форма свечи в сечении задана, скажем, функцией в полярной системе координат. Как найти график, который получится при разрезании? Невыпуклостью сечения можно не заморачиваться...

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 14:55 
Евгений Машеров в сообщении #533026 писал(а):
А свеча - она круглая в сечении была?
Вот я тоже самое про колбасу подумал --- сейчас её могут делать самой невообразимой формы. И для опытов я бы рекомендовал брать сырокопчёную --- и вкусней, и погрешность меньше будет, чем у варёной.

-- Пн янв 30, 2012 18:57:40 --

Munin в сообщении #533070 писал(а):
Пусть форма свечи в сечении задана, скажем, функцией в полярной системе координат. Как найти график, который получится при разрезании?

Думаю, также. Длину дуги, правда, придётся считать.

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 15:02 
А автор не мог для «упрощения» попытаться без свечи и просто разрезать бумажный свёрток? Тогда, естественно, будет пила.

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 15:08 
Аватара пользователя
nnosipov в сообщении #533072 писал(а):
Евгений Машеров в сообщении #533026 писал(а):
А свеча - она круглая в сечении была?
Вот я тоже самое про колбасу подумал --- сейчас её могут делать самой невообразимой формы. И для опытов я бы рекомендовал брать сырокопчёную --- и вкусней, и погрешность меньше будет, чем у варёной.

Хмм... Относительно вкуса обоснованно возразить не могу, но есть сырокопчёные колбасы приблизительно прямоугольные в сечении;)

А сидящие на диете благоволят скатать цилиндрик из пластилина.

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 15:10 
longstreet в сообщении #532988 писал(а):
вырезать по её кромке и, оборачивая вокруг свечи, найти положение, при котором периодичность совпадёт
Не положение подбирать придётся, а диаметр колбасы. Или сначала купить колбасу, измерить диаметр, сосчитать длину окружности, и после этого рисовать синусоиду с таким периодом.

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 15:22 
Раз уж заговорили о колбасе. Правильно ли я помню, что В "Лекциях по аналитической геометрии ..." П.С. Александрова это слово где-то встречается? Ни в каком другом учебнике по этой науке не видел, а там вроде как есть.

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 16:23 
Аватара пользователя
Если потребовать, чтобы форма свечи (колбасы) задавалась параметрически: $x=x(s), y=y(s)$, где $s$ -- натуральный параметр (способ, обыкновенно применяемый в дифгеометрии), то останется только подставить это в уравнение плоскости $z=ax+by$, и мы получим нужную зависимость $z(s)$.

Тем самым основная проблема -- подготовить уравнение колбасной поверхности в нужном виде -- перекладывается на заказчика.

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 17:00 
Алексей К. в сообщении #314079 писал(а):
gris в сообщении #284421 писал(а):
Изображение

Обратите внимание, что на рисунке плоскость $YOZ$ сдвинута вдоль оси $x$ на $1$ для наглядности.

Вершины эллипса - точки $(2;0;1),(1;-1;0),(1;1;0),(0;0;-1)$
Центр эллипса в точке $(1;0;0)$


Вспомнил вот эту картинку... и есть еще ролик на ю-тубе - где кососрезанный цилиндр катится по плоскости... на наверное его сложно найти.

Колбаса и свечи кстати могут быть нескольких видов - конические, эллипсоидальные, сферические, в форме эллиптических цилиндров и тд. - можно просто их разрезать плоскостью и потом катать по столу и смотреть на "синусоиды" которые будет оставлять точка касания на срезе.

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 18:02 
Аватара пользователя
svv
Я хотел намекнуть на обратную проблему: если $s$ (чаще, вроде, параметр обозначается $p,$ хотя это неважно) не дано, а приходится вычислять, то в большинстве случаев интеграл получается неберущийся.

 
 
 
 Re: вырезание синуса из бумаги
Сообщение30.01.2012, 19:29 
Проголодались..... .

 !  Замечание за оффтопик!

 
 
 [ Сообщений: 27 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group