2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 value of k
Сообщение24.12.2011, 07:52 
Number of real values of $k$ for which the equation $\displaystyle\frac{x+2}{kx-1} = x$ has exactly one real solution

 
 
 
 Re: value of k
Сообщение24.12.2011, 09:12 
$k=0$ is not solution.
Consider $x(kx-1)=x+2$. If $x=-2$ solution of quadratic equation and $k=-\frac 12$, we must except this solution and had only another solution solution. But in this case another solution is $x=-2$. Diskriminant $D=4(1+2k)=0\to k=-\frac 12$. Therefore not exist suth k. Number of real values of k is 0.

 
 
 
 Re: value of k
Сообщение24.12.2011, 14:05 
Руст в сообщении #519187 писал(а):
$k=0$ is not solution.

Вполне себе решение.

 
 
 
 Re: value of k
Сообщение24.12.2011, 20:49 
Аватара пользователя
This problem contains two pitfalls. The first one is the assumption that the equation $x+2=x(kx-1)$ is equivalent to the initial one. And the second is the conviction that the latter equation is always quadtratic. After avoiding both piftals we conclude that the answer is 1, which corresponds to the case of $k=0$ and $x=-1$.

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group