2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Помогите разобраться с генетическим кодом группы
Сообщение06.11.2011, 20:35 
Здравствуйте.
Сперва подскажите, правильно ли я понял теорию систем порождающих?

Есть группа $G$ и $S$ -её подмножество. Тогда подгруппа $G$, порожденная подмн-вом $S$ ($ < S > $) - это совокупность всевозможных произведений вида ${{g}_{1}}^{{e}_{1}}{{g}_{2}}^{{e}_{2}}...{{g}_{k}}^{{e}_{k}}$, где ${{g}_{1}}, {{g}_{2}}, ..., {{g}_{k}} \in S$, а степени ${{e}_{1}}, {{e}_{2}}, ..., {{e}_{k}} = \pm 1$ (сразу вопрос - должны ли входить в запись этого произведения все элементы S или слово "всевозможных" подразумевает возможность наличия среди сомножителей не полного списка элементов $S$?)

И если сама $G$ равна $ < S > $, то говорят, что $S$ - система порождающих группы $G$.

Задание мне было дано следующее: описать группу $G\cong <a, b: {a}^{8}=e, {b}^{2}=e, {b}^{-1}ab={a}^{7}>$, в частности, описать ее элементы; указан порядок $G$ - 16. По идее, если элементы $a$ и $b$ порождают $G$, то любой элемент из $G$ представляется в виде произведения $a$ и $b$ в степенях $\pm 1$, ведь так? И вот снова - должны ли в этих произведениях присутствовать и $a$, и $b$?
Если да, то список элементов выглядит как-то так:
$ab, {a}^{-1}b, a{b}^{-1}, {a}^{-1}{b}^{-1}, ba, {b}^{-1}a, b{a}^{-1}, {b}^{-1}{a}^{-1}$
Возможно, стоит включить еще $e$ - пустое произведение.

16 элементов не набирается - что не так?
Заранее спасибо за проявленное внимание.

 
 
 
 Re: Помогите разобраться с генетическим кодом группы
Сообщение06.11.2011, 22:29 
Reg_Paul в сообщении #500299 писал(а):
...совокупность всевозможных произведений вида ${{g}_{1}}^{{e}_{1}}{{g}_{2}}^{{e}_{2}}...{{g}_{k}}^{{e}_{k}}$, где ${{g}_{1}}, {{g}_{2}}, ..., {{g}_{k}} \in S$, а степени ${{e}_{1}}, {{e}_{2}}, ..., {{e}_{k}} = \pm 1$ (сразу вопрос - должны ли входить в запись этого произведения все элементы...


Почти правильно: $e_i$ могут еще принимать значение 0, и тогда Ваш вопрос в скобках отпадает.

Цитата:
16 элементов не набирается - что не так?

Ну, например, есть еще элемент $a^3b=aaab$.

 
 
 
 Re: Помогите разобраться с генетическим кодом группы
Сообщение06.11.2011, 22:53 
Аватара пользователя
Reg_Paul в сообщении #500299 писал(а):
совокупность всевозможных произведений вида ${{g}_{1}}^{{e}_{1}}{{g}_{2}}^{{e}_{2}}...{{g}_{k}}^{{e}_{k}}$, где ${{g}_{1}}, {{g}_{2}}, ..., {{g}_{k}} \in S$, а степени ${{e}_{1}}, {{e}_{2}}, ..., {{e}_{k}} = \pm 1$ (сразу вопрос - должны ли входить в запись этого произведения все элементы S или слово "всевозможных" подразумевает возможность наличия среди сомножителей не полного списка элементов $S$?)
Вы вообще как-то странно понимаете это определение. Количество элементов в этом произведении не фиксировано и может быть любым, начиная от нуля (нулевое число даёт единичный элемент $e$), причём, элементы $a_1$, $a_2$, ..., $a_k$ не обязательно составляют полный список элементов множества $S$ и не обязательно различны. Например, список элементов Вашей группы мог бы начинаться так: $e$, $a$, $a^{-1}$, $b$, $b^{-1}=b$, $aa=a^2$, $aa^{-1}=e$, $a^{-1}a=e$, $a^{-1}a^{-1}=a^{-2}$, $ab$, $ab^{-1}=ab$, $a^{-1}b$, $a^{-1}b^{-1}=a^{-1}b$, $ba$, ...

 
 
 
 Re: Помогите разобраться с генетическим кодом группы
Сообщение06.11.2011, 22:57 
Аватара пользователя
Короче, сажаем обезьяну за пишущую машинку со следующими клавишами: $a,\,b,\,a^{-1},\,b^{-1}$ и пробел (остальные выломать). Через час приходим и разбираемся: выписываем нужные комбинации, вычёркиваем ненужные...

 
 
 
 Re: Помогите разобраться с генетическим кодом группы
Сообщение07.11.2011, 04:58 
Аватара пользователя
bnovikov в сообщении #500374 писал(а):
Почти правильно: могут еще принимать значение 0, и тогда Ваш вопрос в скобках отпадает.

Отпадает только в случае конечности $S$.
В запись элемента может входить произведение любого конечного подмножества множества $S\cup S^{-1}$, в том числе одноэлементного и даже пустого - в последнем случае произведение считается равным единице группы.

 
 
 
 Re: Помогите разобраться с генетическим кодом группы
Сообщение07.11.2011, 05:22 
bot в сообщении #500466 писал(а):
Отпадает только в случае конечности $S$.
В запись элемента может входить произведение любого конечного подмножества множества $S\cup S^{-1}$, в том числе одноэлементного и даже пустого - в последнем случае произведение считается равным единице группы.


Конечность $S$ здесь не имеет никакого значения.

 
 
 
 Re: Помогите разобраться с генетическим кодом группы
Сообщение07.11.2011, 08:38 
Аватара пользователя

(Оффтоп)

Как это не имеет? Вопрос в скобках был следующим
Reg_Paul в сообщении #500299 писал(а):
должны ли входить в запись этого произведения все элементы S

Впрочем можно было и не встревать - просто перед парой не дочитал до поста Someone

 
 
 
 Re: Помогите разобраться с генетическим кодом группы
Сообщение07.11.2011, 13:12 
Так, для наглядности.
Reg_Paul, нарисуйте правильный 8-угольник и рассмотрите движения плоскости, переводящие его в себя.
Эти движения образуют группу. Не имеет ли она отношения к Вашей подгруппе.

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group