2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Олимпиада
Сообщение16.03.2011, 20:19 
1)34x=43y.Простое или составное число x+y
2)решить уравнение 1/x+1/y=1/p где p-простое число
3)Существуют ли такие натуральные n и m , что n*m*(n-m)=45045
4)К числу справо приписывают тройки ,Доказать что когшда-нибудь получится состовное число
5)Существуют бесконечно много натуральных чисел не представимых в виде суммы трех кубов -доказать

 !  Повторное дублирование темы. DjD USB блокируется на неделю.
/ GAA, 16.03.11

 
 
 
 Re: Олимпиада
Сообщение16.03.2011, 21:16 
Все очевидные.
1) минимальное решение $(43,34)$ дает составное 77, остальные кратные 77.
2) $x=y=2p$,
3) нет ($m,n$ должны быть нечетными, однако тогда $n-m$ четное.
4) смотрите по модулю $p$ $3N+1=(3N_0+1)*10^k\to N=\frac{(3N_0+1)*10^k-1}{3}$. Так как при $p=7$ число 10 образующая, то найдется такое $k$.
5) Кубы по модулю 9 дают остатки $0,\pm 1$. Соответственно $9k+3$ не представимо.

 
 
 
 
Сообщение16.03.2011, 21:32 
Руст в сообщении #423693 писал(а):
5) Кубы по модулю 9 дают остатки $0,\pm 1$. Соответственно $9k+3$ не представимо.

Может, $9k+4$? :-)

 
 
 
 Re: Олимпиада
Сообщение16.03.2011, 22:00 
Халявщик таки добился ответов. :roll: Правда неполных.

Руст в сообщении #423693 писал(а):
2) $x=y=2p$
Это не все решения.

 
 
 
 Re: Олимпиада
Сообщение16.03.2011, 23:25 
Да. $y=\frac{xp}{x-p}$. Если $p|x\to x=kp\to k=2,x=y=2p$. иначе возможно только $x=p+1$ при $x\le y$.
5. $9k+4,9k+5$ не представляются суммой 3 кубов.

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group