Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия, Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Когда-то где-то мельком прочитал, что наименьший по модулю собственный вектор гессиана направлен вдоль минимального изменения функции. Статья была полупрограммистская, поэтому без объяснений и подробностей.
Знающие, ткните пожалуйста куда за доказательством смотреть. Спасибо заранее.
мат-ламер
Re: Гессиан, собственные векторы.
23.02.2011, 09:53
Возможно Вы имеете в виду "собственный вектор, соответствующий минимальному по абсолютной величине собственному значению"? Исходная формулировка не верна, потому что с. вектор можно умножать на произвольную константу, и он остаётся при этом с. вектором.
-- Ср фев 23, 2011 11:03:16 --
Попробуйте решить следующую задачу. Найти экстремум квадратичной формы на единичной сфере. Убедитесь, что сей экстремум достигается на с.векторах. Найдите значение кв. формы на этих векторах.
Gortaur
Re: Гессиан, собственные векторы.
23.02.2011, 12:27
Я думал, что направление минимального изменения функции это всеж нормаль к градиенту.
Я думал, что направление минимального изменения функции это всеж нормаль к градиенту.
Это в первом приближении. Матрица же Гессе даёт второе приближение. И учитывать её имеет смысл только тогда, когда первое приближение (т.е. градиент) нулевое.
мат-ламер
Re: Гессиан, собственные векторы.
23.02.2011, 13:10
Статья возможно была по оптимизации и рассматривался Truncated Newton nethod. В нём функцию аппроксимируют квадратично. Далее находят экстремумы этой кв.функции на сфере к-либо диаметра. Далее находят направление движения исходя из этих экстремумов. Тут фишка в том, что если рассматривать поведение функции локально и использовать только градиент (как в предыдущем посту), то это приводит к градиентному методу оптимизации, который, как известно, не эффективен. И важно уловить поведение функции не только локально, а и на некотором расстоянии от текущей точки.