2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Книги для школьников
Сообщение27.03.2010, 02:44 
Какие книги можно порекомендовать школьникам для самостоятельного углубленного изучения математики?

Вопрос касается математического самообразования. Как известно, школьная математика (если только речь не идет о матшколах) дает не совсем правильное представление о математике. Точнее, неполное. Есть довольно большой "пласт", не затронутый в школьных учебниках, но вполне доступный для понимания в школьном возрасте. Как правило этот пласт затрагивается на всевозможных маткружках, олимпиадах, турнирах и т. п. Но без специального тренера перед школьником стоит практически непосильная задача самостоятельного овладения "олимпиадной" математикой. Понятно, что обнаружив и желая раскрыть способности, часто меняют школу на какую-нибудь "углубленную". Но так поступают далеко не все и не всегда. И школьный учитель далеко не всегда в должной мере разбирается в "олимпиадной" математике...

Благо, есть книги. На форуме уже поднималась тема самостоятельной подготовки к олимпиадам. Я имею ввиду нечто похожее, но с одной оговоркой: цель заключается не столько в достижении высоких "спортивных" результатов, сколько в расширении математического кругозора и подготовки к "взрослой" математической жизни. Книг, ясное дело, очень много, но есть своего рода школьная математическая классика, познакомиться с которой стоит в первую очередь. Такой себе список рекомендованной литературы :)

Просьба ко всем: поделиться своими рекомендациями. Какие книги, по Вашему мнению, должны стоять на книжной полке "юного математика"?

От чего лично я не отказался бы в школьные годы:
- Алфутова Н.Б., Устинов А.В. Алгебра и теория чисел
- Виленкин Н.Я. Рассказы о множествах
- Виленкин Н.Я. Комбинаторика
- Галицкий М.Л. Сборник задач по алгебре 8-9
- Генкин С.А. Ленинградские математические кружки
- Горбачев Н.В. Сборник олимпиадных задач по математике
- журнал "Квант"
- Курант Р., Роббинс Г. Что такое математика?
- Прасолов В.В. Задачи по планиметрии
- Сканави М.И. (под ред.) Сборник задач для поступающих в ВУЗы
- Энциклопедия для детей "Аванта+" Математика
- сайт http://www.problems.ru

P.S. Сам я о большинстве названных книг до поступления в университет, к сожалению, не знал, чем, видимо, и была навеяна такая тема. Надеюсь, кому будет полезно :)

 
 
 
 Re: Книги для школьников
Сообщение27.03.2010, 04:51 
Аватара пользователя
Ну, я бы Конкретную математику ещё добавил, как минимум.

 
 
 
 Re: Книги для школьников
Сообщение27.03.2010, 10:38 
Аватара пользователя
Я бы к "Кванту" добавил его "Библиотечку" и серию "Популярные лекции по математике". Ну и Пойа "МО", "МиПР".
Главное - читать эти книги, работать над ними, а не просто хранить на диске, как часто бывает. (Это я про себя)

 
 
 
 Re: Книги для школьников
Сообщение28.03.2010, 11:21 
 i  Переношу в "Вопросы преподавания".

 
 
 
 Re: Книги для школьников
Сообщение30.03.2010, 17:04 
Что я запомнил из того, что было у меня:
- Зельдович Я.Б. "Высшая математика для начинающих и ее приложения к физике"
- Дж.Д.Вильямс. "Совершенный стратег или Букварь по теории стратегических игр"
- Кемени Дж., Снелл Дж., Томпсон Дж. "Введение в конечную математику"
- "Новая геометрия треугольника"

 
 
 
 Re: Книги для школьников
Сообщение30.03.2010, 18:35 
V.V. Vavilov
"Equations and Inequalities"

Чтобы было понятно для чего я рекомендую эту книгу, приведу пример с решением из неё (дословно):

Example 1. Solve the equation
x/3+(2x-1)/6=1-x/3.
Solution. We have x/3+(2x-1)/6=1-x/3<=>x/3+x/3+x/3=1+1/6<=>7/6.


Как видим, если из этого текста убрать все слова, то смысл всёравно будет понятен - дана задача и её решение.

Кроме того в книге есть также нестандартные задачи.

 
 
 
 Re: Книги для школьников
Сообщение30.03.2010, 19:15 
Аватара пользователя
kahey в сообщении #304589 писал(а):
x/3+(2x-1)/6=1-x/3<=>x/3+x/3+x/3=1+1/6<=>7/6


Это что за логика? А, пропустили х=.
Тщательнее надо. Программки Ваши доставили. Особенно появляющиеся из угла определения. Ничо так. Особенно если несколько раз нажать на разные кнопки. Анимация, однако...
Ой, когда ж Вы успели забаниться?

 
 
 
 Re: Книги для школьников
Сообщение30.03.2010, 19:20 
В. Г. Болтянский, А. П. Савин "Беседы о математике. Книга 1. Дискретные объекты"

 
 
 
 Re: Книги для школьников
Сообщение31.03.2010, 13:08 
RIP в сообщении #302978 писал(а):
Ну, я бы Конкретную математику ещё добавил, как минимум.

Для школьников? Ну только если для действительно сильных, по-моему.

 
 
 
 Re: Книги для школьников
Сообщение31.03.2010, 17:09 
gris в сообщении #304608 писал(а):
kahey в сообщении #304589 писал(а):
x/3+(2x-1)/6=1-x/3<=>x/3+x/3+x/3=1+1/6<=>7/6


Это что за логика? А, пропустили х=.
Тщательнее надо. Программки Ваши доставили. Особенно появляющиеся из угла определения. Ничо так. Особенно если несколько раз нажать на разные кнопки. Анимация, однако...
Ой, когда ж Вы успели забаниться?

Я же говорю текст переписал один к одному намеренно.

(Анимация мне тоже нравиться, но буду побовать и другие подходы)

 
 
 
 Re: Книги для школьников
Сообщение31.03.2010, 17:37 
Аватара пользователя
Alexey Romanov в сообщении #304885 писал(а):
RIP в сообщении #302978 писал(а):
Ну, я бы Конкретную математику ещё добавил, как минимум.
Для школьников? Ну только если для действительно сильных, по-моему.
Возможно. Я читал --- мне нравилось (мне преподаватель по информатике посоветовала, вместе с Курантом--Роббинсом). Ещё мне Теорема Абеля в задачах и решениях В.Б. Алексеева нравилась.
А ещё про Числа и фигуры Радемахера и Тёплица неплохие отзывы встречал.

 
 
 
 Re: Книги для школьников
Сообщение31.03.2010, 20:17 
Ещё Пойа "Как решать задачу" - очень полезно научиться задавать самому себе вопросы, которые он рекомендует. Реально помогает решать задачи.

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group