2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 13th Internat.Math.Competition for Univ.Students,Odessa-2006
Сообщение23.07.2006, 17:11 
Экс-админ
Аватара пользователя


23/05/05
2106
Kyiv, Ukraine
13th International Mathematical Competition (IMC) for University Students, Odessa-2006
1st Day, 22 July 2006


1. Let $f: \mathbb{R}\to \mathbb{R}$ be a real function. Prove or disprove each of the following statements. (a) If $f$ is continuous and $\text{range}(f)=\mathbb{R}$ then $f$ is monotonic. (b) If $f$ is monotonic and $\text{range}(f)=\mathbb{R}$ then $f$ is continuous. (c) If $f$ is monotonic and $f$ is continuous then $\text{range}(f)=\mathbb{R}$.

2. Find the number of positive integers $x$ satisfying the following two conditions: 1) $x<10^{2006}$, 2) $x^{2}-x$ is divisible by $10^{2006}$.

3. Let $A$ be an $n\times n$ matrix with integer entries and $b_{1},b_{2},...,b_{k}$ be integers satisfying $\det A=b_{1}\cdot b_{2}\cdot ...\cdot b_{k}$. Prove that there exist $n\times n$-matrices $B_{1},B_{2},...,B_{k}$ with integers entries such that $A=B_{1}\cdot B_{2}\cdot ...\cdot B_{k}$ and $\det B_{i}=b_{i}$ for all $i=1,...,k$.

4. Let $f$ be a rational function (i.e. the quotient of two real polynomials) and suppose that $f(n)$ is an integer for infinitely many integers $n$. Prove that $f$ is a polynomial.

5. Let $a, b, c, d, e$ be five strictly positive real numbers such that
\begin{gather*} a^{2}+b^{2}+c^{2}=d^{2}+e^{2}, \\ a^{4}+b^{4}+c^{4}=d^{4}+e^{4}. \end{gather*}
Compare \[ a^{3}+b^{3}+c^{3} \] with \[ d^{3}+e^{3}. \]

6. Find all sequences $a_{0}, a_{1},\ldots, a_{n}$ of real numbers such that $a_{n}\neq 0$, for which the following statement is true:
If $f: \mathbb{R}\to\mathbb{R}$ is an $n$ times differentiable function and $x_{0}<x_{1}<\ldots <x_{n}$ are real numbers such that $f(x_{0})=f(x_{1})=\ldots =f(x_{n})=0$ then there is $h\in (x_{0}, x_{n})$ for which
\[ a_{0}f(h)+a_{1}f'(h)+\ldots+a_{n}f^{(n)}(h)=0. \]

General info: http://www.imc-math.org/index.php?year=2006
Problem 1: http://www.mathlinks.ro/Forum/viewtopic.php?t=103086
Problem 2: http://www.mathlinks.ro/Forum/viewtopic.php?t=103090
Problem 3: http://www.mathlinks.ro/Forum/viewtopic.php?t=103092
Problem 4: http://www.mathlinks.ro/Forum/viewtopic.php?t=103093
Problem 5: http://www.mathlinks.ro/Forum/viewtopic.php?t=103089
Problem 6: http://www.mathlinks.ro/Forum/viewtopic.php?t=103094

 Профиль  
                  
 
 
Сообщение23.07.2006, 17:24 
Экс-админ
Аватара пользователя


23/05/05
2106
Kyiv, Ukraine
Условия 1-го дня в PDF-файле: http://rapidshare.de/files/26730854/imc ... a.pdf.html

 Профиль  
                  
 
 
Сообщение26.07.2006, 01:22 
Экс-админ
Аватара пользователя


23/05/05
2106
Kyiv, Ukraine
13th International Mathematical Competition (IMC) for University Students, Odessa-2006
2nd Day, 23 July 2006


1. Let $V$ be a convex polygon. (a) Show that if $V$ has $3k$ vertices, then $V$ can be triangulated such that each vertex is in an odd number of triangles. (b) Show that if the number of vertices is not divisible with 3, then $V$ can be triangulated such that exactly 2 vertices have an even number of triangles.

2. Find all functions $f: \mathbb{R}\to\mathbb{R}$ such that for any $a<b$, $f([a,b])$ is an interval of length $b-a$.

3. Compare $\tan(\sin x)$ with $\sin(\tan x)$, for $x\in (0,\frac{\pi}{2})$.

4. Let $v_{0}$ be the zero vector and let $v_{1},...,v_{n+1}\in\mathbb{R}^{n}$ such that the Euclidian norm $|v_{i}-v_{j}|$ is rational for all $0\le i,j\le n+1$. Prove that $v_{1},...,v_{n+1}$ are linearly dependent over the rationals.

5. Show that there are an infinity of integer numbers $m$, $n$, with $\gcd(m,n)=1$ such that the equation $(x+m)^{3}=nx$ has 3 different integer solutions.

6. Let $A_{i}$, $B_{i}$, $S_{i}$ ($i=1,2,3$) be invertible real $2\times 2$ matrices such that (1) not all $A_{i}$ have a common real eigenvector, (2) $A_{i}=S_{i}^{-1}B_{i}S_{i}$ for $i=1,2,3$, (3) $A_{1}A_{2}A_{3}=B_{1}B_{2}B_{3}=I$. Prove that there is an invertible $2\times 2$ matrix $S$ such that $A_{i}=S^{-1}B_{i}S$ for all $i=1,2,3$.

Problem 1: http://www.mathlinks.ro/Forum/viewtopic.php?t=103464
Problem 2: http://www.mathlinks.ro/Forum/viewtopic.php?t=103466
Problem 3: http://www.mathlinks.ro/Forum/viewtopic.php?t=103467
Problem 4: http://www.mathlinks.ro/Forum/viewtopic.php?t=103663
Problem 5: http://www.mathlinks.ro/Forum/viewtopic.php?t=103468
Problem 6: http://www.mathlinks.ro/Forum/viewtopic.php?t=103665

 Профиль  
                  
 
 
Сообщение27.07.2006, 16:21 
Экс-админ
Аватара пользователя


23/05/05
2106
Kyiv, Ukraine
Появились тексты задач 4 и 6 второго дня.

Появились результаты: http://www.imc-math.org.uk/imc2006/results2006.htm

Условия двух дней в PDF-файле: http://rapidshare.de/files/27206493/imc ... a.pdf.html

 Профиль  
                  
 
 
Сообщение29.07.2006, 15:22 
Экс-админ
Аватара пользователя


23/05/05
2106
Kyiv, Ukraine
Появились авторские решения:
1-й день: http://www.imc-math.org.uk/imc2006/day1_solutions.pdf
2-й день: http://www.imc-math.org.uk/imc2006/day2_solutions.pdf
Условия: http://www.mathlinks.ro/Forum/viewtopic ... ch&id=4661

Еще выложили фотки:
http://www.imc-math.org.uk/index.php?ye ... tem=photos

Обсуждение на форуме: College Playground » Contests for Undergraduates » International Mathematics Competition @ MathLinks.Ro.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group