2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Вычислить приближенно значение логарифма
Сообщение02.11.2009, 16:47 
Аватара пользователя
Задание такое: вычислить приближенно величину lg(e) с заданной степенью точности, воспользовавшись разложением в степенной ряд соответствующим образом подобранной функции. Вот не могу функцию подобрать, которую раскладывать( Была идея такая:
\[
\begin{array}{l}
 \lg e = \frac{1}{{\ln (10)}} \\ 
 \ln (10) = \ln (1 + 9) \\ 
 y = \ln (1 + x) \\ 
 \ln (1 + x) = x - \frac{{x^2 }}{2} + \frac{{x^3 }}{3} + ... + ( - 1)^{n - 1} \frac{{x^n }}{n} \\ 
 \end{array}
\]
Но при раскладывании этой функции и потом деля единицу на сумму первых нескольких членов - получаю бред;)
В общем, подтолкните на верный путь меня)

 
 
 
 Re: Вычислить приближенно - не допираю
Сообщение02.11.2009, 16:54 
Число 9 лежит вне круга сходимости ряда.
Воспользуйтесь $\ln 10=-\ln(0.1)$.

 
 
 
 Re: Вычислить приближенно - не допираю
Сообщение02.11.2009, 16:55 
Аватара пользователя
Правильно, что бред, потому что там есть такой радиус сходимости, и вот его не надо игнорировать.
Либо ищите $\ln{1\over 10}$ (увы, тогда сходимость... так себе), либо $\ln{10\over e^2}$, либо не помню, вроде какие-то ещё были приёмы.

 
 
 
 Re: Вычислить приближенно - не допираю
Сообщение02.11.2009, 17:08 
Аватара пользователя
Спасибо. А вот ещё не подскажете:
Найти область сходимости ряда
\[
\sum\limits_{n = 1}^\infty  {\sin (\frac{x}{{2^n }})} 
\]
Пытаюсь решить стандартным способом:

\[
\begin{array}{l}
 u_n  = \sin (\frac{x}{{2^n }}); \\ 
 u_{n + 1}  = \sin (\frac{x}{{2^{n + 1} }}); \\ 
 \ {\lim }\limits_{n \to \infty } \frac{{\left| {u_{n + 1} } \right|}}{{\left| {u_n } \right|}} < 1; \\ 
 \ {\lim }\limits_{n \to \infty } \frac{{\left| {\sin (\frac{x}{{2^{n + 1} }})} \right|}}{{\left| {\sin (\frac{x}{{2^n }})} \right|}} < 1; \\ 
 \end{array}
\]
И предел какой-то злой получился, как оттуда икс достать - непонятно(
Отставить - предел решился)

 
 
 
 Re: Вычислить приближенно - не допираю
Сообщение02.11.2009, 21:53 
Аватара пользователя
Для вычисления логарифма можно использовать ряды, которые получаются из основного ряда
$$\ln(1+x)=x-\frac{x^2}2+\frac{x^3}3-\frac{x^4}4+\ldots+(-1)^{k-1}\frac{x^k}k+\ldots\text{,}\eqno{(1)}$$
который сходится при $-1<x\leqslant 1$. Его $n$-ный остаток
$$r_n(x)=(-1)^n\left(\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}+\frac{x^{n+3}}{n+3}-\frac{x^{n+4}}{n+4}+\ldots\right)$$
при $0\leqslant x\leqslant 1$ является знакочередующимся с убывающими членами и оценивается по признаку Лейбница неравенством $|r_n(x)|\leqslant\frac{x^{n+1}}{n+1}$, а при $-1<x\leqslant 0$ получается знакопостоянный ряд, остаток которого можно оценить геометрической прогрессией со знаменателем $-x$ и первым членом $\left|\frac{x^{n+1}}{n+1}\right|$, откуда $|r_n(x)|\leqslant\frac{|x|^{n+1}}{(n+1)(1+x)}$.

Если вычислять
$$\ln 10=-\ln 0{,}1=-\ln(1-0{,}9)\approx\sum_{k=1}^n(-1)^{k-1}\frac{x^k}k\text{,}$$
то $x=-0{,}9$ и $|r_n|\leqslant\frac{10\cdot 0{,}9^{n+1}}{n+1}$, то есть, в $10$ раз больше первого отброшенного члена.

Заменяя в ряде (1) $x$ на $-x$, получим ряд
$$\ln(1-x)=-x-\frac{x^2}2-\frac{x^3}3-\frac{x^4}4-\ldots-\frac{x^k}k-\ldots\text{;}\eqno{(2)}$$
вычитая ряд (2) из ряда (1), получим
$$\ln\frac{1+x}{1-x}=\ln(1+x)-\ln(1-x)=2x+\frac{2x^3}3+\frac{2x^5}5+\ldots+\frac{2x^{2k-1}}{2k-1}+\ldots\text{.}\eqno{(3)}$$
Этот ряд сходится при $-1<x<1$ и является знакопостоянным; его $n$-ный остаток
$$r_n(x)=\frac{2x^{2n+1}}{2n+1}+\frac{2x^{2n+3}}{2n+3}+\frac{2x^{2n+5}}{2n+5}+\ldots$$
можно оценить с помощью геометрической прогрессии со знаменателем $x^2$ и первым членом $\frac{2|x|^{2n+1}}{2n+1}$, поэтому $|r_n(x)|\leqslant\frac{2|x|^{2n+1}}{(2n+1)(1-x^2)}$.

Решив уравнение $\frac{1+x}{1-x}=y$, найдём $x=\frac{y-1}{y+1}$, поэтому ряд (3) можно переписать в виде
$$\ln y=2\left(\frac{y-1}{y+1}\right)+\frac 23\left(\frac{y-1}{y+1}\right)^3+\ldots+\frac 2{2k-1}\left(\frac{y-1}{y+1}\right)^{2k-1}\right)+\ldots\text{,}\eqno{(4)}$$
а оценку остатка - в виде $|r_n(y)|\leqslant\frac{(y+1)^2}{2y(2n+1)}\left(\frac{y-1}{y+1}\right)^{2n+1}$.

При $y=10$ получим $x=\frac{y-1}{y+1}=\frac 9{11}$. Если вычислять
$$\ln 10=\sum_{k=1}^n\frac 2{2k-1}\left(\frac 9{11}\right)^{2k-1}\text{,}$$
то будет $0<r_n\leqslant\frac{121}{20(2n+1)}\left(\frac 9{11}\right)^{2n+1}$. Это лучше, чем то, что даёт ряд (1), так как здесь знаменатель прогрессии $x^2=\frac{81}{121}\approx 0{,}67<0{,}9$.

Ещё лучше получается, если в ряд (3) подставить $x=\frac 1{2m+1}$. Тогда $\frac{1+x}{1-x}=\frac{m+1}m$, поэтому $\ln\frac{1+x}{1-x}=\ln\frac{m+1}m=\ln(m+1)-\ln m$, и из ряда (3) получается ряд
$$\ln(m+1)=\ln m+\frac 2{2m+1}+\frac 2{3(2m+1)^3}+\ldots+\frac 2{(2k-1)(2m+1)^{2k-1}}+\ldots\text{.}\eqno{(5)}$$
Считая, что $m>0$, получаем следующую оценку остатка: $0<r_n(m)\leqslant\frac 1{2m(m+1)(2n+1)(2m+1)^{2n-1}}$.

С помощью этого ряда сначала вычисляем $\ln 2=\ln(1+1)$ при $m=1$, затем $\ln 5=\ln(4+1)$ при $m=4$, используя значение $\ln 4=2\ln 2$, потом $\ln 10=\ln 2+\ln 5$. Конечно, нужно правильно оценить погрешность.

pro100student в сообщении #257603 писал(а):
Найти область сходимости ряда


Есть такое неравенство: $|\sin x|\leqslant|x|$ Равенство бывает только при $x=0$).

 
 
 
 Re: Вычислить приближенно - не допираю
Сообщение02.11.2009, 22:11 
Жуть какая-то.

$\lg e$ -- это, конечно, и впрямь ${1\over\ln10}$. В свою очередь, $\ln10$ -- это, безусловно (как метко заметил ИСН), $2+\ln{10\over e^2}=2+\ln\left(1+\left({10\over e^2}-1\right)\right)$. И поскольку в последнем выражении прибавка к единичке порядка одной четверти -- ряд Тейлора достаточно быстро сходится. Ну можно ещё, конечно, побаловаться ещё какими степенями, но это уже баловство. Смотря какая точность запрошена.

По поводу области сходимости. Зачем неравенства, к чему неравенства?... Всё, что нужно твёрдо помнить -- так это что синус малого аргумента эквивалентен самому аргументу. И тогда автоматом при любом иксе выскочит предел 1/2. (Только надо для приличия ещё модули не позабыть, но это, в общем, не принципиально.)

 
 
 
 Re: Вычислить приближенно - не допираю
Сообщение02.11.2009, 22:32 
Аватара пользователя
Нет, ewert, это правильная, годная жуть - я её как раз числил под разрядом "какие-то ещё были приёмы". Ну мало ли, нужно быстро вычислить что-то такое на руках, а число e никто не помнит. Тогда вот так.

 
 
 
 Re: Вычислить приближенно - не допираю
Сообщение04.11.2009, 13:31 
Аватара пользователя
Я остановился на варианте с вычислением $\
\ln (\frac{{10}}{{e^2 }})
\
$, приняв в нем число е с точностью до 4 знаков после запятой ( точность которая указана в условии задачи). Надеюсь, прокатит такое решение)
У меня вот ещё наболевший вопрос: не могу найти общий член ряда $\[
\sum\limits_{n = 1}^\infty  {\frac{{1 \cdot 7 \cdot 13...(6n - 5)}}{{2 \cdot 3 \cdot 4...(n + 1)}}} 
\]$
В знаменателе будет (n+1)!, а вот с числителем не могу разобраться((
З.Ы.: всем огромное спасибо за оказанную помощь в примере с логарифмом)

 
 
 
 Re: Вычислить приближенно - не допираю
Сообщение04.11.2009, 15:17 
pro100student в сообщении #258208 писал(а):
В знаменателе будет (n+1)!, а вот с числителем не могу разобраться((
Для этого просто вводят новое обозначение:
$(6n-5)!!!!!!$
И означает оно ровно то, что в числителе (а вовсе не факториал факториала факториала факториала факториала факториала).

 
 
 
 Re: Вычислить приближенно - не допираю
Сообщение04.11.2009, 15:30 
Аватара пользователя
И чему тогда будет равен $\[
\mathop {\lim }\limits_{n \to \infty } \frac{{(6n + 1)!!!!!!}}{{(6n - 5)!!!!!!}}
\]
$ ?) ( это получается при исследовании ряда по признаку Даламбера, с факториалом n+1 и n+2 и так все ясно)
Я думаю, так как у нас 6 чисел пропускаются, то предел будет равен 6...

 
 
 
 Re: Вычислить приближенно - не допираю
Сообщение04.11.2009, 15:51 
AD в сообщении #258234 писал(а):
Для этого просто вводят новое обозначение:
$(6n-5)!!!!!!$

Это напоминает байку про Леонида Ильича. Который, дескать, толкает речь на открытии московской Олимпиады. Достаёт листок и читает:
"О! О! О! О! О! ..."

pro100student в сообщении #258237 писал(а):
И чему тогда будет равен $\[
\mathop {\lim }\limits_{n \to \infty } \frac{{(6n + 1)!!!!!!}}{{(6n - 5)!!!!!!}}
\]
$ ?) ( это получается при исследовании ряда по признаку Даламбера, с факториалом n+1 и n+2 и так все ясно)

Так вот Вам как раз вовсе и не обозначения нужны. А нужно просто выписать два соседних члена ряда ровно в том виде, как задано -- и посмотреть, что остаётся после сокращений.

-- Ср ноя 04, 2009 16:53:04 --

pro100student в сообщении #258237 писал(а):
Я думаю, так как у нас 6 чисел пропускаются, то предел будет равен 6...

Логика жутко прихрамывает, но ответ правильный.

 
 
 
 Re: Вычислить приближенно - не допираю
Сообщение04.11.2009, 16:01 
Аватара пользователя
Цитата:
Так вот Вам как раз вовсе и не обозначения нужны. А нужно просто выписать два соседних члена ряда ровно в том виде, как задано -- и посмотреть, что остаётся после сокращений.

Действительно, подставляю соседние члены и их отношение с увеличением порядкового номера стремится к 6)) :D
Когда я вычислял сам предел решил что $\[
\frac{{(6n + 1)!!!!!!}}{{(6n - 5)!!!!!!}} = (6n + 1)
\]
$
Почему же логика хромает у меня? :oops:

 
 
 
 Re: Вычислить приближенно - не допираю
Сообщение04.11.2009, 16:22 
pro100student в сообщении #258245 писал(а):
Когда я вычислял сам предел решил что $\[
\frac{{(6n + 1)!!!!!!}}{{(6n - 5)!!!!!!}} = (6n + 1)
\]
$
Почему же логика хромает у меня? :oops:

Вот теперь правильно. А "количество пропущенных чисел" -- это какая-то совсем ненужная лирика.

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group