arqady писал(а):
Не вижу никакой связи с Вашим условием неположительности дискриминанта. 

Это условие вообще, оно верно при 

.
arqady писал(а):
Вы также не ответили на другой мой вопрос: Как Вы учитываете Ваше условие при доказательстве неравенства?
Из него должно следовать любое данное неравенство, которое нужно доказать.
arqady писал(а):
У меня получилось 

Вот давайте на этом примере!
Надо доказать, что из 

 следует 

.
Так как 

, то 

Так как 

, то 

.
Тогда нужно доказать, что при 

 верно 

.
Вот собственно и весь способ. Дальше надо доказывать с помощью матанализа или еще чего-нибудь, но поскольку способ общий, доказательство, скорее всего, будет самое громоздкое. Для неравенств только с циклической симметрией не проходит.
Уравнение 

 определяет параболу Нейля на плоскости, слева от нее все точки, удовлетворяющие неравенству 

, а справа - нет.

. (Теперь уже обе кривые можно нарисовать, посмотреть, как они располагаются, вторая кривая - эллиптическая, с точкой самопересечения. Она делит плоскость на 3 части, в двух из них 

. И область, где 

 лежит внутри второй области, где 

, поэтому неравенство верно. Чтобы доказать, надо доказать верность 2-х неравенств от 

 при 

).
  В данном случае это все глупо, конечно, выглядит, но вот 1-е неравенство в этой теме я так решил (о чем писал выше)