2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Легкое разбиение
Сообщение21.06.2024, 22:08 
Куб разбит на прямоугольные параллелепипеды. Оказалось, что центры параллелепипедов образуют выпуклый многогранник. Можно ли утверждать, что каждый параллелепипед прилегает к поверхности куба?

 
 
 
 Re: Легкое разбиение
Сообщение22.06.2024, 15:13 
Ответ: нет.
Чуть выше нижней грани куба:
11111
22234
22254
22254
22254
Все остальное - шестой и седьмой параллелепипеды.

 
 
 
 Re: Легкое разбиение
Сообщение22.06.2024, 15:24 
Аватара пользователя
Edward_Tur в сообщении #1643576 писал(а):
Все остальное - шестой и седьмой параллелепипеды.
Сколько всего параллелепипедов?

 
 
 
 Re: Легкое разбиение
Сообщение22.06.2024, 21:57 
Edward_Tur в сообщении #1643576 писал(а):
Ответ: нет.
Чуть выше нижней грани куба:
11111
22234
22254
22254
22254
Все остальное - шестой и седьмой параллелепипеды.

Да, хорошая конструкция. У меня немного другая, но по существу аналогичная:
Изображение
эта картинка или конструкция Edward_Tur это вид сверху на средний слой разбиения, нужно далее окружить его сверху и снизу двумя параллелепипедами, образуя "бутерброд ". Это надстройка над плоской задачей.
Очевидно, менее чем пятью квадратами в плоской задаче нельзя обойтись, а в пространстве - менее чем семью.

 
 
 
 Re: Легкое разбиение
Сообщение23.06.2024, 08:41 
Аватара пользователя
Deathrose в сообщении #1643622 писал(а):
нужно далее окружить его сверху и снизу двумя параллелепипедами, образуя "бутерброд "
Можно не окружать сверху и снизу. А разрезать внутренний параллелепипед на три слоя.

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group