2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Найти предел функции
Сообщение02.12.2008, 15:24 
\[
\mathop {\lim }\limits_{x \to 1} \frac{{2x - 2}}{{\ln x}}
\]
получаем неопределенность вида \[
\frac{0}{0}
\]

Как рассчитать предел?
Спасибо

 
 
 
 Re: Найти предел
Сообщение02.12.2008, 15:42 
Аватара пользователя
Sebastian69 писал(а):
получаем неопределенность вида \[
\frac{0}{0}
\]

Вы впервые получаете такую неопределенность? Или уже раньше получали? Что раньше делали?

 
 
 
 
Сообщение02.12.2008, 15:43 
Аватара пользователя
Ну так тут много методов - 1) Лопиталь или 2) сделать замену $x=1+t$ и разложить в ряд Тейлора.

 
 
 
 
Сообщение02.12.2008, 15:57 
Аватара пользователя
Или сделать замену и увидеть замечательный предел :roll:

 
 
 
 
Сообщение03.12.2008, 08:28 
ShMaxG писал(а):
Или сделать замену и увидеть замечательный предел :roll:

Какую нужно сделать замену, чтобы получить "замечательный" предел?

 
 
 
 
Сообщение03.12.2008, 08:39 
Аватара пользователя
Sebastian69 в сообщении #164132 писал(а):
Какую нужно сделать замену
x = t+1

 
 
 
 
Сообщение03.12.2008, 10:36 
\[
\mathop {\lim }\limits_{t \to 0} \frac{{2t}}{{\ln (t + 1)}}
\]
После замены мне легче не стало :(
Как дальше действовать? Как привести к "замечательному" пределу?

 
 
 
 
Сообщение03.12.2008, 10:39 
Во-первых, сократите. Во-вторых, к чему стремится $t$?

 
 
 
 
Сообщение03.12.2008, 10:46 
Аватара пользователя
Sebastian69 в сообщении #164156 писал(а):
После замены мне легче не стало
Как можно помочь научиться танцевать человеку, который еще не научился ходить? Для начала, научитесь раскрывать скобки и приводить подобные члены (курс школьной алгебры за 5-й класс), после чего переходите к изучению пределов. :shock:
И не превращайте форум в клуб слабоумных!

 
 
 
 
Сообщение03.12.2008, 10:53 
Brukvalub писал(а):
Sebastian69 в сообщении #164156 писал(а):
После замены мне легче не стало
Как можно помочь научиться танцевать человеку, который еще не научился ходить? Для начала, научитесь раскрывать скобки и приводить подобные члены (курс школьной алгебры за 5-й класс), после чего переходите к изучению пределов. :shock:
И не превращайте форум в клуб слабоумных!


Приведение само собой.
По-поводу решения таких задач, не могу не согласиться с Вами - не умею. Но очень надо срочно (думаю, что никого здесь не интересуют подробности). Поэтому и прошу помочь.

 
 
 
 
Сообщение03.12.2008, 11:07 
Посмотрите вычисление $\lim_{t \to 0} \ln(1+t)/t$ в учебнике, например, Ильин В.А., Позняк Э.Г. Основы математического анализа. Т.1

 
 
 
 
Сообщение03.12.2008, 12:59 
GAA
Спасибо большое

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group