2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Long List 1971.
Сообщение03.06.2024, 13:23 
Let $a,b,c$ are positiv real numbers and $a\leq b\leq c.$ Prove that for all real numbers $x,y,z$ hold
$$(ax+by+cz)\cdot (\frac{x}{a}+\frac{y}{b}+\frac{z}{c})\leq (x+y+z)^2\cdot \frac{(a+c)^2}{4ac}.$$

 
 
 
 Re: Long List 1971.
Сообщение03.06.2024, 18:06 
Реверсное неравенство Коши-Шварца :
Пускай $a_1,a_2,…a_n$ и $b_1,b_2,…b_n$ - два набора положительных чисел, причем $0<m\le\frac{a_k}{b_k}\le M$ для всех $k=1,2,…,n$. Тогда
$$\sum_{k=1}^n{a_k^2}\sum_{k=1}^n{b_k^2}\le \frac{(m+M)^2}{4mM}\left(\sum_{k=1}^n{a_kb_k}\right)^2.$$
Доказательство суммированием неравенств
$$0\le\left(\frac{a_k}{b_k}-m\right) \left(M-\frac{a_k}{b_k}\right)$$
с последующим применением неравенства Коши.

 
 
 
 Re: Long List 1971.
Сообщение03.06.2024, 19:30 
Аватара пользователя
rsoldo в сообщении #1641219 писал(а):
Let $a,b,c$ are positiv real numbers and $a\leq b\leq c.$ Prove that for all real numbers $x,y,z$ hold
$$(ax+by+cz)\cdot (\frac{x}{a}+\frac{y}{b}+\frac{z}{c})\leq (x+y+z)^2\cdot \frac{(a+c)^2}{4ac}.$$


Counterexample $a=1,b=2,c=4,x=-1,y=2,z=-1.$

For $0< a\leq b\leq c$ and $xy\geq 0$

$\left(x+y+z\right)^2\cdot \dfrac{\left(a+c\right)^2}{4ac} - (ax+by+cz)\cdot \left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right) =$

$=\dfrac{\left( b\left(c-a\right)^2(z-x) + \left(a^2b+bc^2-2ac^2-2ab^2+2abc\right)y \right)^2}{4ab^2c\left(c-a\right)^2} + $

$ + \dfrac{(b-a)(c^2-ab)\left(c-b\right)^2y^2}{b^2c\left(c-a\right)^2} +\dfrac{(b-a)(c-b)(c+a)xy}{abc}\geq 0$

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group