2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Неравенство с корнями
Сообщение31.05.2024, 21:19 
Для неотрицательных $x$ и $y$ доказать неравенство
$$\sqrt{x^2 y^2-xy+1}+\sqrt{x^2-xy+y^2}\ge\sqrt{x^2+x+1}.$$

 
 
 
 Re: Неравенство с корнями
Сообщение01.06.2024, 19:36 
Аватара пользователя
Edward_Tur в сообщении #1640894 писал(а):
Для неотрицательных $x$ и $y$ доказать неравенство
$$\sqrt{x^2 y^2-xy+1}+\sqrt{x^2-xy+y^2}\ge\sqrt{x^2+x+1}.$$


$\sqrt{x^2 y^2-xy+1}+\sqrt{x^2-xy+y^2}=\sqrt{\left(xy-\frac{1}{2}\right)^2+\frac{3}{4}}+\sqrt{\left(\frac{x}{2}-y\right)^2+\frac{3x^2}{4}}\geq$

$\geq\sqrt{\left( xy-\frac{1}{2}+\frac{x}{2}-y\right)^2+3\left(\frac{1}{2}+\frac{x}{2} \right)^2}=\sqrt{\left(x-1\right)^2y(y+1)+\left(x^2+x+1\right)}\geq$

$\geq \sqrt{x^2+x+1}$

Rak so dna в сообщении #1634679 писал(а):
Здесь мы воспользовались неравенством Минковского:
Для $a_i,b_i\geq0,~p\geq1,~\Bigl(\sum{a_i^p}\Bigr)^\frac{1}{p}+\Bigl(\sum{b_i^p}\Bigr)^\frac{1}{p}\geq \Bigl(\sum{\left(a_i+b_i\right)^p}\Bigr)^\frac{1}{p}$

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group