2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Разложение перестановки в произведение двух циклов
Сообщение27.04.2024, 19:49 
Решаю задачи из задачника Белоногова по теории групп. Попалась такая:
Цитата:
Доказать, что каждая перестановка симметрической группы $S_n$ есть произведение двух циклов.

Не могу найти идею решения. Дайте легкую подсказку, если не сложно.

 
 
 
 Re: Разложение перестановки в произведение двух циклов
Сообщение27.04.2024, 22:30 
Любая перестановка представляется в виде произведения независимых циклов:
$$(a_1 \ldots a_n)(b_1 \ldots b_n)\ldots (c_1 \ldots c_n)$$
В качестве первого цикла возьмите
$$(a_1 \ldots a_n b_1 \ldots b_n \ldots c_1 \ldots c_n)$$
и подберите второй цикл.

 
 
 
 Re: Разложение перестановки в произведение двух циклов
Сообщение27.04.2024, 22:39 
Черт, гениально, все понял, спасибо!

mathematician123 в сообщении #1637467 писал(а):
Любая перестановка представляется в виде произведения независимых циклов:
$$(a_1 \ldots a_n)(b_1 \ldots b_n)\ldots (c_1 \ldots c_n)$$
В качестве первого цикла возьмите
$$(a_1 \ldots a_n b_1 \ldots b_n \ldots c_1 \ldots c_n)$$
и подберите второй цикл.

 
 
 
 Re: Разложение перестановки в произведение двух циклов
Сообщение27.04.2024, 22:44 
Хм.. а вот я не очень понял.

mathematician123, можете сказать, о какой перестановке (из скольки элементов) Вы говорите вот здесь:
mathematician123 в сообщении #1637467 писал(а):
Любая перестановка представляется в виде произведения независимых циклов:
$$(a_1 \ldots a_n)(b_1 \ldots b_n)\ldots (c_1 \ldots c_n)$$


Другими словами, Ваша перестановка - это элемент какого множества?

 
 
 
 Re: Разложение перестановки в произведение двух циклов
Сообщение27.04.2024, 22:48 
Там с индексами напутано, но сути не меняет

EminentVictorians в сообщении #1637469 писал(а):
Хм.. а вот я не очень понял.

mathematician123, можете сказать, о какой перестановке (из скольки элементов) Вы говорите вот здесь:
mathematician123 в сообщении #1637467 писал(а):
Любая перестановка представляется в виде произведения независимых циклов:
$$(a_1 \ldots a_n)(b_1 \ldots b_n)\ldots (c_1 \ldots c_n)$$


Другими словами, Ваша перестановка - это элемент какого множества?

 
 
 
 Re: Разложение перестановки в произведение двух циклов
Сообщение27.04.2024, 22:59 
EminentVictorians в сообщении #1637469 писал(а):
Другими словами, Ваша перестановка - это элемент какого множества?

Вот так правильно:
$$(a_1 \ldots a_{n_1})(b_1 \ldots b_{n_2}) \ldots (c_1 \ldots c_{n_k})$$
где $n_1 + \ldots + n_k = n$.

 
 
 
 Re: Разложение перестановки в произведение двух циклов
Сообщение27.04.2024, 23:41 
mathematician123 в сообщении #1637471 писал(а):
Вот так правильно:
$$(a_1 \ldots a_{n_1})(b_1 \ldots b_{n_2}) \ldots (c_1 \ldots c_{n_k})$$
где $n_1 + \ldots + n_k = n$.
А второй цикл будет $(a_1, c_1, ... , b_1)$?

 
 
 
 Re: Разложение перестановки в произведение двух циклов
Сообщение28.04.2024, 01:35 
EminentVictorians
Да.

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group