2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Интересная задача на поиск натуральных делителей бинома
Сообщение22.03.2024, 14:45 
Здравствуйте, господа, недавно столкнулся со следующей задачей: "На вход подаются 2 числа $n$ и $k$. На выходе необходимо выдать количество НАТУРАЛЬНЫХ делителей биномиального коэффициента $\binom{n}{k}$ по модулю 1000000007"
1 $\leqslant$ $k$ $\leqslant$ $n$ $\leqslant$ 500000
Понятно, что в лоб здесь не получится идти, потому что для некоторых значений $k$ и $n$ число получится огромным. Нашел вот такое тождество:
$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$. Но с ним пока ничего не добился. Был бы рад наводящим соображениям.

 
 
 
 Re: Интересная задача на поиск натуральных делителей бинома
Сообщение22.03.2024, 14:47 
Аватара пользователя
Не надо считать биномиальные коэффициенты в явном виде, посмотрите, как выглядит их разложение на простые (и как посчитать число делителей, зная разложение на простые).

 
 
 
 Re: Интересная задача на поиск натуральных делителей бинома
Сообщение22.03.2024, 15:03 
mihaild в сообщении #1633711 писал(а):
Не надо считать биномиальные коэффициенты в явном виде, посмотрите, как выглядит их разложение на простые (и как посчитать число делителей, зная разложение на простые).

Я знаю, как найти количество делителей, зная разложение числа на простые множители, однако, как можно быстро найти разложение биномиального коэффициента на простые множители?

 
 
 
 Re: Интересная задача на поиск натуральных делителей бинома
Сообщение22.03.2024, 15:45 
Аватара пользователя
Laguna в сообщении #1633716 писал(а):
однако, как можно быстро найти разложение биномиального коэффициента на простые множители
Можете ли Вы посчитать, в какой степени число $7$ входит в разложение на простые числа $100!$?

 
 
 
 Re: Интересная задача на поиск натуральных делителей бинома
Сообщение23.03.2024, 16:26 
mihaild в сообщении #1633722 писал(а):
Laguna в сообщении #1633716 писал(а):
однако, как можно быстро найти разложение биномиального коэффициента на простые множители
Можете ли Вы посчитать, в какой степени число $7$ входит в разложение на простые числа $100!$?


100/7=14

 
 
 
 Re: Интересная задача на поиск натуральных делителей бинома
Сообщение23.03.2024, 17:11 
mathpath в сообщении #1633853 писал(а):
100/7=14
Legendre's formula:
$\lfloor \frac {100} 7 \rfloor + \lfloor \frac {100} {7^2} \rfloor = 16$.

 
 
 
 Re: Интересная задача на поиск натуральных делителей бинома
Сообщение23.03.2024, 19:00 
Аватара пользователя
mathpath в сообщении #1633853 писал(а):
100/7=14
Нет, это число сомножителей, делящихся на $7$, а не степень, в которой $7$ входит в произведение.
После исправления подумайте, как из этого получить, в какой степени простое число входит в биномиальный коэффициент.

 
 
 [ Сообщений: 7 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group