Имхо такое определение бинарного графа (у которого могут быть как конечные, так и бесконечне ветви т.е. в общем случае) является естественным для данной задаче:
Бинарный граф будем называть множество из бинарных последовательностей (как конечных, так и бесконечных), причем последовательности в множестве удовлетворяют следующими требованиями:
1) Любая из конечных последовательностей в множестве, не является префиксом (и не совпадает с) какой-либо другой конечной последовательности из множества
2) Любая из конечных последовательностей в множестве, не является префиксом какой-либо бесконечной последовательности из множества
3) Любые две бесконечные последовательности в множестве отличаются (в обычном смысле - что существует натуральное
, для которого соответные разряды бесконечных последовательностей отличаются)
Таким образом, граф в общем случае естественно определен как множество своих ветвей.
И имеется бесконечная ветвь или нет, в конкретном графе из задачи - будет зависеть от его определения.
Теперь рассмотрим следующее рассуждение:
Предположим, что бесконечной ветки нету. Тогда путь от корня по левым вершинам с координатами вида 00..0 конечен.
Наш граф - множество содержащее все конечные последовательности нулей и оканчивающиеся на единицу.
Из того, что "бесконечней ветки нету" - отнюдь не следует что "путь от корня по левым вершинам с координатами вида 00..0 конечен".
Второе утверждение - это утверждение про
"пути" (т.е. "
последовательности подветок") - и таки да, у нас в множестве имеются ветки (и соотвенно подветки) с любым количеством нулей в начале. Но все они конечны (тем более, оканчиваются на 1) по определению.
Если перевести рассуждение на языке последовательностей (предерживаясь определению графа выше "через веток"), то хорошо видна его несостоятельность:
Этот граф определяется бесконечным множеством (счетном, их можно упорядочить даже) конечных последовательностей "ветвей":
1,
01
001,
0001,
......
Тогда:
Предположим, что бесконечной ветки нету.
переводится как "предположим, что в данном множестве бесконечной последовательности нету". Ну да, нету - более того, это так уже по определению данного конкретного графа.
Тогда путь от корня по левым вершинам с координатами вида 00..0 конечен.
переводится как "тогда найдется такое
что в множестве нет последовательности с более чем
нулей". ("путь" - это последовательный выбор подветок
разных элементов из множества, с возрастающим количеством нулей в начале).
Очевидно что второе из первым никак не следует.
"путь от корня по левым вершинам с координатами вида 00..0" - хотя это и "путь" - но это же не ветка! : ) Поэтому из отсутствия бесконечной ветки, ничего не может следовать про конечности или бесконечности каких-то "путей"/(наборов "подветок").
В множестве бесконечной последовательности нет, все правильно.
Но это отнюдь не означает, что для какого-то
не найдется последовательности с более чем
нулями.
Наоборот, для любого
найдется (притом бесконечное количество) последовательностей (веток) с больше чем
нулей. Но тем не менее все они - конечные :)
То, что
"путь от корня по левым вершинам с координатами вида 00..0" можно продолжать сколь угодно долго - означает только то, что пройденный путь всегда является "подветкой" (префиксом) еще бесконечного количества конечных веток (хотя и в любой момент мы можем "повернуть" к единичке и остановиться).
Вывод - все дело в определении графа, и что такое "ветвь"...