2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Ряды Дирихле
Сообщение15.09.2023, 13:34 
Уважаемые участники форума, докажите:
Пусть $f(n),n=1,2,...$ - арифметическая функция и ряд Дирихле $\sum_{n=1}^{\infty} \frac{f(n)}{n^s}$ - сходится, а ряд Дирихле - $\sum_{n=1}^{\infty} \frac{f(n)}{n^{s-1}}$ - расходится.
Тогда $\sum_{n\leq x} \frac{f(n)}{n^{s-1}}=o(x)$ при значении $x \to \infty$.

 
 
 
 Re: Ряды Дирихле
Сообщение15.09.2023, 16:08 
Сами докажите.

Мне кажется, это несложное упражнение по матану. Хотя, если сюда забредёт младшекурсник, ему может быть полезно. Тех, для кого задача простая, прошу не писать сюда решение.

 
 
 
 Re: Ряды Дирихле
Сообщение15.09.2023, 16:16 
vicvolf в сообщении #1609274 писал(а):
ряд Дирихле $\sum_{n=1}^{\infty} \frac{f(n)}{n^s}$ - сходится, а ряд Дирихле - $\sum_{n=1}^{\infty} \frac{f(n)}{n^{s-1}}$ - расходится.

При каких $s$? Или задано некоторое фиксированное $s$?

 
 
 
 Re: Ряды Дирихле
Сообщение15.09.2023, 16:22 
Я думал, что $s$ фиксировано, так что можно считать $s = 0$, переходя от функции $f(n)$ к $f(n)/n^s$

-- 15.09.2023, 16:25 --

И тогда утверждение верно только если $f(n) \in \mathbb{R}_{>0}$, вроде

 
 
 
 Re: Ряды Дирихле
Сообщение15.09.2023, 16:56 

(Решение)

Пусть $a_i\in \mathbb{C}$ и $\sum_{i=1}^{\infty}a_i$ - сходиться.
Возьмем любое $\varepsilon>0$
Пусть $M$ таково что $|\sum_{i=m}^{n}a_i|<\varepsilon$ при$M\le m\le n$
Тогда
$$|\sum_{i=1}^{n}ia_i|=|\sum_{i=1}^{M-1}ia_i+\sum_{i=M}^{n}ia_i|\le C(\varepsilon)+(M-1)|\sum_{i=M}^{n}a_i|+\sum_{m=M}^{n}|\sum_{i=m}^{n}a_i|\le C(\varepsilon)+n\varepsilon $$
Откуда следует то что требуется доказать.

 
 
 
 Re: Ряды Дирихле
Сообщение15.09.2023, 17:00 
Padawan в сообщении #1609311 писал(а):
При каких $s$? Или задано некоторое фиксированное $s$?
Для начала будем считать, что $s$ - фиксированное натуральное число.

 
 
 
 Re: Ряды Дирихле
Сообщение15.09.2023, 19:46 
Null в сообщении #1609318 писал(а):
$$|\sum_{i=1}^{n}ia_i|=|\sum_{i=1}^{M-1}ia_i+\sum_{i=M}^{n}ia_i|\le C(\varepsilon)+(M-1)|\sum_{i=M}^{n}a_i|+\sum_{m=M}^{n}|\sum_{i=m}^{n}a_i|\le C(\varepsilon)+n\varepsilon $$
Поясните, пожалуйста, более подробно, как формируются члены неравенства?

 
 
 
 Re: Ряды Дирихле
Сообщение15.09.2023, 20:30 
vicvolf в сообщении #1609406 писал(а):
Поясните, пожалуйста, более подробно, как формируются члены неравенства?

$C(\varepsilon)=|\sum_{i=1}^{M-1}ia_i|$ - от $n$ не зависит.
$\sum_{i=M}^{n}ia_i=(M-1)\sum_{i=M}^{n}a_i+\sum_{m=M}^{n}\sum_{i=m}^{n}a_i$ - Можно просто посчитать сколько раз $a_i$ встречется слева и справа.

 
 
 
 Re: Ряды Дирихле
Сообщение15.09.2023, 23:01 
Аватара пользователя
А не проще ли будет сравнить $b_i/i$ и $b_i/n$?

 
 
 
 Re: Ряды Дирихле
Сообщение16.09.2023, 07:56 
Geen в сообщении #1609485 писал(а):
А не проще ли будет сравнить $b_i/i$ и $b_i/n$?

Сравнивать комплексные числа не хорошо.

 
 
 
 Re: Ряды Дирихле
Сообщение16.09.2023, 10:13 
Аватара пользователя
Null в сообщении #1609514 писал(а):
Сравнивать комплексные числа не хорошо.

Прошу прощения, слишком кратко написал - имелись в виду соответствующие ряды.
$\sum_{i=1}^n\frac {b_i} i$ (имеет конечный предел) и $\frac 1 n \sum_{i=1}^n b_i$ (требуется доказать, что предел 0).

Но это мне вчера казалось, что так может быть проще. Сегодня уже не кажется. :-)

 
 
 
 Re: Ряды Дирихле
Сообщение16.09.2023, 10:50 
Geen в сообщении #1609517 писал(а):
$\sum_{i=0}^n\frac {b_i} i$ (имеет конечный предел) и $\frac 1 n \sum_{i=0}^n b_i$ (требуется доказать, что предел 0).
Вообще-то нижний индекс суммирования по условию равен 1. Там $f$ - арифметическая функция, которая определяется только для натуральных значений.
Null в сообщении #1609318 писал(а):
Пусть $a_i\in \mathbb{C}$ и $\sum_{i=1}^{\infty}a_i$ - сходится.
Возьмем любое $\varepsilon>0$
Пусть $M$ таково что $|\sum_{i=m}^{n}a_i|<\varepsilon$ при$M\le m\le n$
Тогда
$$|\sum_{i=1}^{n}ia_i|=|\sum_{i=1}^{M-1}ia_i+\sum_{i=M}^{n}ia_i|\le C(\varepsilon)+(M-1)|\sum_{i=M}^{n}a_i|+\sum_{m=M}^{n}|\sum_{i=m}^{n}a_i|\le C(\varepsilon)+n\varepsilon $$
Спасибо, хороший вариант решения. Может кто-то сделает проще?

 
 
 
 Re: Ряды Дирихле
Сообщение16.09.2023, 11:00 
Аватара пользователя
vicvolf в сообщении #1609523 писал(а):
Вообще-то нижний индекс суммирования по условию равен 1

Прошу прощения, конечно. Опечатка. Поправил.

 
 
 
 Re: Ряды Дирихле
Сообщение16.09.2023, 14:36 
vicvolf в сообщении #1609274 писал(а):
ряд Дирихле $\sum_{n=1}^{\infty} \frac{f(n)}{n^s}$ - сходится, а ряд Дирихле - $\sum_{n=1}^{\infty} \frac{f(n)}{n^{s-1}}$ - расходится.
Кстати по-моему упустили условие. Ведь ряды могут сходиться и при $s$ и при $s-1$. Здесь тому много примеров https://ru.wikipedia.org/wiki/%D0%94%D0 ... 0%BD%D0%B0

 
 
 
 Re: Ряды Дирихле
Сообщение18.09.2023, 09:56 
Размещаю мой вариант доказательства:

Если ряд Дирихле $\sum_{n=1}^{\infty} \frac{f(n)}{n^s}$ - сходится, то $\sum_{n \leq x} \frac{f(n)}{n^s}=c+o(1)$ при значении $x \to \infty$, где $c$ - постоянная.
Так как ряд Дирихле $\sum_{n=1}^{\infty} \frac{f(n)}{n^{s-1}}$ - расходится, то по формуле суммирования Абеля справедливо:
$\sum_{n=1}^{\infty} \frac{f(n)}{n^{s-1}}=\sum_{n=1}^{\infty}\frac{f(n)n}{n^s}}=(c+o(1))x-\int_{1}^{x}{(c+o(1))dt=cx+o(x)-cx+o(x)=o(x)$ , при значении $x \to \infty$.
Если бы ряд Дирихле $\sum_{n=1}^{\infty} \frac{f(n)}{n^{s-1}}$ - сходился, то тривиально $\sum_{n \leq x} \frac{f(n)}{n^{s-1}}=c_1+o(1)$, где $c_1$ - постоянная.

 
 
 [ Сообщений: 15 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group