2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение26.08.2023, 11:13 
sergey zhukov в сообщении #1606622 писал(а):
скалярное произведение векторов


Кста, ещё одна идея. Или векторное произведение, а потом на него модуль натянуть, тоже своеобразные скобки

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение26.08.2023, 12:30 
Gagarin1968 в сообщении #1606550 писал(а):
операции надо использовать все?


Gagarin1968 в сообщении #1606550 писал(а):
Если нет, то как Вам такое: $1^3\cdot 4\cdot 6=24$?


Надо было разделить на один в кубе, а не умножить. И перед тройкой поставить плюс, а перед четырьмя и шестью - минус, тогда будут "фсе" :D

Исчо можно 6 и 4 оставить как есть, а перед двадцатью четырьмя поставить два минуса.

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение26.08.2023, 13:09 
Еще один "обходной" вариант. Читается: выражение (4):
$$(3+1)*6=24 ~~~~~~~~~~~~~~~(4)$$

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение26.08.2023, 13:19 
Еще варианты:

1. 4-й раз объясняю, что

sergey zhukov в сообщении #1606649 писал(а):
$$(3+1)*6=24$$


Сколько можно не выкупать очевидные вещи?

2. Rule thirty-4: There is porn about formula

sergey zhukov в сообщении #1606649 писал(а):
$$(3+1)*6=24$$


No exceptions!!

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение27.08.2023, 12:58 
Лукомор в сообщении #1606611 писал(а):
Второе: $(^4_3)\cdot(^6_1)=24$

И на самом деле, оригинально! (хотя и совсем не отвечает условиям - интерпретация скобок "нестандартна" - но я ведь "стандартность" интерпретации скобок не уточнял. Хотя я то же самого не уточнял для интерпретации операций "сложения", "вычитания" и т.д.)

ozheredov
"Аналитическое" решение этой задачи мне неизвестно...
Только решения с перебором, только не "тупым" а с "отсеканием" "типовых" ветвей которые к успеху "привести не могут" (в общем случае по разных причин для разных ветвей)

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение27.08.2023, 13:09 
manul91 в сообщении #1606792 писал(а):
Только решения с перебором, только не "тупым" а с "отсеканием" "типовых" ветвей которые к успеху "привести не могут" (в общем случае по разных причин для разных ветвей)


Не-не-не, я это и имел в виду под аналитическим решением:

а) С чего начинаем?
б) На каком основании отсекаем ветви, сколько примерно ветвей остается.
в) Как переходим к следующему шагу.

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение27.08.2023, 13:48 
ozheredov в сообщении #1606798 писал(а):
а) С чего начинаем?
б) На каком основании отсекаем ветви, сколько примерно ветвей остается.
в) Как переходим к следующему шагу.
Я примерно пытался "подойти систематически" так, насколько помню: Начал с множества чисел 1, 3, 4 и 6. Потом, группировал чисел попарно через какую-то операцию, и переходил к новым множествам на одним числом меньше (на троек интуиция работает проще). Например если взять "умножение" и использовать его на пару 4 и 3, можно перейти к ту же задачку на множестве 1, 12, 6. Умножение (или деление) на единицу также дает возможность от нее "избавиться" сводя задачку к той же, но уже на чисел 3,4,6. Для некоторых комбинаций как бы "интуитивно понятно" что они ничего полезного не дадут (типа $6\cdot4 = 24$ сводя к 1,3,24; или $3\cdot4=12$ сводя к 1, 12, 6) так что их "можно" сразу отмести не проверяя дальше.
Типа так и с других операций, методом тыка и интуиции, плюс некоторым везением... : )

 
 
 
 Нумерологическая забава. Усложненная.
Сообщение27.08.2023, 19:29 
Аватара пользователя
А если ввести более строгие ограничения, сможете найти решение?

Использовать 1, 3, 4 и 6, операции сложения, вычитания, умножения, деления и скобок ровно один раз. При этом нельзя менять представленную в условии последовательность цифр.

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение28.08.2023, 10:14 
Аватара пользователя
Но ведь операции сложения, вычитания, умножения и деления — бинарные. Каждое их применение уменьшает количество операндов на один.
В самом начале у нас 4 операнда и с помощью скобок мы не можем их количество менять. Значит, всего три бинарных операции у нас получится при любых раскладах. Или нет? Или я что-то упустил?
PETIKANTROP, сможете привести пример выражения, в котором используется 4 числа (любых) ровно по одному разу, и при этом ровно 4 арифметических действия (тоже любых)?

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение28.08.2023, 10:16 
worm2
Да просто минус (или плюс даже) перед первым числом ставишь, вот тебе и "использовал вычитание/сложение".

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение28.08.2023, 10:20 
Аватара пользователя
sergey zhukov в сообщении #1606892 писал(а):
Да просто минус (или плюс даже) перед первым числом ставишь, вот тебе и "использовал вычитание/сложение".

Это совсем другая операция. У неё даже приоритет выше чем у умножения...

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение28.08.2023, 19:25 
Аватара пользователя
worm2
Цифры 1,3,4,6 нужно использовать все по одному разу, не меняя их позиции.
"+", "-", "/", "*", "скобки" можно использовать только один раз ( но не обязательно все ).

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение28.08.2023, 20:29 
Аватара пользователя
PETIKANTROP в сообщении #1606838 писал(а):
А если ввести более строгие ограничения, сможете найти решение?

Решение у исходной задачи единственное....

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение28.08.2023, 20:35 
Аватара пользователя
PETIKANTROP в сообщении #1606967 писал(а):
worm2
Цифры 1,3,4,6 нужно использовать все по одному разу, не меняя их позиции.
"+", "-", "/", "*", "скобки" можно использовать только один раз ( но не обязательно все ).

Тут не так уж много вариантов для компьютерного перебора. У меня получилось 1206 валидных выражений (включая унарные "+" и "-", а также "склейку" цифр в число), ни одно из которых не даёт 24.
Т.е. решений с такими условиями нет.
Конечно, я мог что-то не учесть, где-то ошибиться.

 
 
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение29.08.2023, 13:01 
sergey zhukov в сообщении #1606545 писал(а):
manul91

(Оффтоп)

$\frac{6}{1-\frac{3}{4}}$

Я потратил не меньше часа, прежде чем понял, что нужно делить на что-нибудь меньше единицы. Да, задачка не из самых простых.

5 минут. Брутфорс и везение. (время засек, честно не пролистывал дальше первого сообщения)

Ну, как брутфорс? В условии сказано "числа", поэтому порядок такой: берем пару чисел ($a, b$ - $6$ вариантов выбора) , производим между ними какое-то действие, одно из шести ($a+b, a-b, b-a, a\cdot b, \frac{a}{b}, \frac{b}{a}$) - итого $36$ исходов замены какой-то пары на одно число, то есть $36$ всевозможных троек рациональных чисел. В каждом случае снова выбираем одну из трех пар, производим те же действия, по $18$ исходов, $648$ пар на выходе. Наконец, с этими парами проводим какое-то действие, получая один из $3888$ результатов, какие-то еще и одно и то же. То есть задача решается буквально тупым перебором.
Но это долго, поэтому можно пойти обратно: пусть две операции уже провели, осталось провести последнее действие с участием какого-то из исходных чисел. Значит, надо провести обратную операцию с $24$ и одним из четырех. Да, есть особые случаи типа $(1+6)\cdot(3+4)=49$ или $\frac{1}{6}+\frac{3}{4}=\frac{11}{12}$, но можно положиться на удачу и надеяться, что это не они.

Короче говоря, я выписал на бумажке 4 строки вида "число на последней операции, результаты перед последней операцией, три числа, из которых этот результат должен получиться" и присмотрелся к ним, удачной оказалась в итоге строка $$6: 18, -18, 30, 4, 144, {1\over4} \Leftarrow \{1, 3, 4\}$$
Вот очень удачно последняя запись сложилась, из нее ответ сразу ясен.

 
 
 [ Сообщений: 31 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group