fixfix
2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Якобы схожесть формул (но это неточно)
Сообщение25.04.2023, 21:56 


25/04/23
11
В общем решая задачи заметил одну странную деталь в формулах где надо найти энергию

$E=\frac{mv^2}{2}$(Кинетическая)

$E=\frac{kx^2}{2}$(Маятника)

$E=\frac{CU^2}{2}$(Конденсатора)

$E=\frac{Li^2}{2}$(Катушки)

Вопрос: что между ними общего? Почему они так похоже и с чем это связано? :?:

 Профиль  
                  
 
 Re: Якобы схожесть формул (но это неточно)
Сообщение25.04.2023, 21:59 


10/03/16
4444
Aeroport
parameda в сообщении #1591139 писал(а):
Вопрос: что между ними общего?


Они все оформлены так, что дядя модератор сделает Вам а-та-та )))

parameda в сообщении #1591139 писал(а):
Почему они так похоже?


Потому что мы в Матрице.

 Профиль  
                  
 
 Posted automatically
Сообщение25.04.2023, 22:01 
Админ форума


02/02/19
2894
 i  Тема перемещена из форума «Помогите решить / разобраться (Ф)» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы);

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение25.04.2023, 22:54 
Админ форума


02/02/19
2894
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (Ф)»
Причина переноса: не указана.

 Профиль  
                  
 
 Re: Якобы схожесть формул (но это неточно)
Сообщение25.04.2023, 23:32 


17/10/16
5199
parameda
Это потому, что во всех этих случаях для нахождения энергии нужно проинтегрировать выражения, соответственно, $mudu$, $kxdx$, $CUdU$ и $Lidi$. Проще всего это понять для второго случая: сила $F=kx$ прямо пропорциональна перемещению $x$, а элементарная работа силы по определению равна $dA=Fdx$. Энергия - это интеграл работы, т.е. $E=\int\limits_{}^{}kxdx$. В общем, аналогично в остальных случаях.

Во всех этих случаях элементарная работа становится пропорционально все больше и больше с ростом соответствующей переменной. Работа силы по разгону тела на каждый следующий 1 м/сек пропорциональна самой скорости, работа силы по отклонению маятника на каждый следующий 1 см пропорциональна текущему положению маятника, работа по перенесению каждого следующего кулона заряда с одной пластины конденсатора на другую пропорциональна уже имеющемуся заряду и т.д. Т.е. "трудность" продолжать делать что-либо линейно возрастает пропорционально уже сделанному. Во всех этих случаях это так и есть, отсюда одинаковые формулы.

 Профиль  
                  
 
 Re: Якобы схожесть формул (но это неточно)
Сообщение26.04.2023, 01:06 


05/09/16
12391
parameda в сообщении #1591139 писал(а):
Вопрос: что между ними общего?

Все они получаются из чего-то вроде $dA=kydy \to \int 1\cdot dA=k\int ydy \to A=k\dfrac{y^2}{2}$

 Профиль  
                  
 
 Re: Якобы схожесть формул (но это неточно)
Сообщение26.04.2023, 01:09 


01/03/13
2650
Еще
$E=\frac{I w^2}{2}$ (Вращение)

 Профиль  
                  
 
 Re: Якобы схожесть формул (но это неточно)
Сообщение26.04.2023, 01:37 
Заслуженный участник


20/04/10
1985

(Оффтоп)


 Профиль  
                  
 
 Re: Якобы схожесть формул (но это неточно)
Сообщение26.04.2023, 01:46 


01/03/13
2650

(Оффтоп)


 Профиль  
                  
 
 Re: Якобы схожесть формул (но это неточно)
Сообщение26.04.2023, 02:11 


10/03/16
4444
Aeroport
lel0lel в сообщении #1591189 писал(а):
в формуле $E=mc^2$, просто проинтегрировали с ошибкой


Нет. Просто на ультра-релятивистских скоростях двойка становится единицей -- лоренцевский эффект сокращения

 Профиль  
                  
 
 Re: Якобы схожесть формул (но это неточно)
Сообщение26.04.2023, 07:14 


17/10/16
5199

(Оффтоп)


 Профиль  
                  
 
 Re: Якобы схожесть формул (но это неточно)
Сообщение26.04.2023, 19:27 
Заслуженный участник


29/09/14
1277

(Феноменологический подход)


 Профиль  
                  
 
 Re: Якобы схожесть формул (но это неточно)
Сообщение26.04.2023, 19:57 


17/10/16
5199

(Оффтоп)


 Профиль  
                  
 
 Re: Якобы схожесть формул (но это неточно)
Сообщение26.04.2023, 20:28 
Заслуженный участник


29/09/14
1277
sergey zhukov в сообщении #1591287 писал(а):
Тут еще нужно потребовать разложимости в ряд. Иначе ничего не мешает предположить, что, скажем, $E\propto \left\lvert x\right\rvert$
Формально да, но тем физика и отличается от чистой математики, что в физике всегда рассматриваются физически приемлемые ситуации и соответственно физике выбирается математическое описание. Возможность описания степенными слагаемыми с целыми положительными степенями подразумевается в физике всегда, если нет веских оснований для какой-то неаналитичности.

Например, в физике фазовых переходов заведомо можно ожидать неаналитичности по температуре, типа $|T_c - T|^\alpha,$ так как $T_c$ это особая точка: в ней меняется фазовое состояние вещества.

А в случае пружины (и в остальных упомянутых примерах) $x=0$ - заведомо никакая не особая точка. Предполагать ни с того ни с сего неаналитичность упомянутых функций $E(x)$ при малых $x$ было бы с точки зрения физики ошибкой.

Короче говоря, формально Вы правы: при тщательном изложении наверное надо бы в первую очередь написать то, что я сейчас тут написал. Но всё-таки подчеркну: феноменологическая теория в физике это не раздел математики, а именно физика. Если физик пишет ряд, то тем самым физик уже автоматически подразумевает, что эта запись имеет определённый смысл в данной физической задаче; если пишет интеграл, то подразумевает, что интеграл хоть как-то можно вычислить (хоть в каком-то пределе, хоть с какой-то регуляризацией - и тогда об этом будет сказано явно); если пишет производные, то подразумевает, что и они имеют смысл в данном физическом контексте.

 Профиль  
                  
 
 Re: Якобы схожесть формул (но это неточно)
Сообщение26.04.2023, 21:09 


17/10/16
5199
Cos(x-pi/2)
Я тоже так считаю, конечно. Предполагать разрывность без явных физических причин - это глупо. Такой феноменологический подход, например, относительно закона $F(x)$ для пружины приводит к следующему:

1. При $x=0$ $F(x)$ должен быть равен нулю (очевидно);
2. $F(x)$ должен быть гладким (нет физических причин для обратного);
3. $F(x)$ должен быть отрицательным для $x>0$ и положительным для $x<0$;
4. $F(x)$ при достаточно малом $\Delta x$ должен быть линейным (при действительно достаточно малом $\Delta x$ ничего другого просто не остается).

Отсюда следует закон Гука: $F(x)$ - прямая, проходящая через ноль.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 17 ]  На страницу 1, 2  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group