2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Разложение модуля в прямую сумму подмодулей
Сообщение21.11.2022, 15:18 
Нашел такое утверждение: чтобы модуль $M$ раскладывался в прямую сумму своих подмодулей $N \oplus L$ необходимо и достаточно, чтобы $N + L = M$ и $N \cap L = 0$. Доказательство достаточности очевидно.

(Оффтоп)

Если $N \cap L = 0$, то гомоморфизм сложения $\varphi \colon N \oplus L \mapsto N + L$, $(n, l) \mapsto n + l$ является изоморфизмом, а из этого и того что $N + L = M$ следует, что $N \oplus L \cong M$.

Но я не понимаю, как доказать необходимость.

 
 
 
 Re: Разложение модуля в прямую сумму подмодулей
Сообщение21.11.2022, 15:54 
Аватара пользователя
sour в сообщении #1570710 писал(а):
Но я не понимаю, как доказать необходимость.
Полагаю, Вы понимаете, что нужно взять произвольное $M = N \oplus L$ и доказать, что из этого следует, что $N + L = M$ и $N \cap L = 0$?

 
 
 
 Re: Разложение модуля в прямую сумму подмодулей
Сообщение21.11.2022, 16:08 
Anton_Peplov
Конечно. Я пытался предположить, что одновременно $M = N \oplus L$ и $N + L \ne M$ или $N \cap L \ne 0$, но не смог получить никаких противоречий.

 
 
 
 Re: Разложение модуля в прямую сумму подмодулей
Сообщение21.11.2022, 17:32 
Аватара пользователя
sour
Не нужно от противного. Пусть $M = N \oplus L$. Давайте доказывать, что $M = N + L$. Нужно доказать два включения: $M \subset N + L$ и $N + L \subset M$. Докажем первое включение. Рассмотрим произвольное $m \in M$...

 
 
 
 Re: Разложение модуля в прямую сумму подмодулей
Сообщение21.11.2022, 19:48 
Anton_Peplov
Если что-то можно доказать напрямую, это можно доказать и от противного. Если из $M = N \oplus L$ как-то следует, что $M = N + L$, то из предположения $M = N \oplus L$ и $N + L \ne M$ будет следовать противоречие.

Я пытался рассматривать произвольный $m$, не получается.

 
 
 
 Re: Разложение модуля в прямую сумму подмодулей
Сообщение21.11.2022, 20:00 
Аватара пользователя
sour в сообщении #1570747 писал(а):
Если что-то можно доказать напрямую, это можно доказать и от противного.
Да. Вопрос в том, как проще.
sour в сообщении #1570747 писал(а):
Я пытался рассматривать произвольный $m$, не получается.
И что не получается?
Anton_Peplov в сообщении #1570727 писал(а):
Нужно доказать два включения: $M \subset N + L$ и $N + L \subset M$. Докажем первое включение. Рассмотрим произвольное $m \in M$...
Рассмотрим произвольное $m \in M$. По условию, $M = N \oplus L$. Значит, существуют такие $n \in N, l \in L$, что $m = n + l$. Значит, $M \subset N + L$.
Обратное включение докажите сами.

 
 
 
 Re: Разложение модуля в прямую сумму подмодулей
Сообщение21.11.2022, 21:01 
Anton_Peplov
Цитата:
По условию, $M = N \oplus L$. Значит, существуют такие $n \in N, l \in L$, что $m = n + l$.

В том-то и дело, что не значит. Под равенством тут, конечно же, имеет в виду изоморфизм, сам по себе модуль не может быть равен прямой сумме своих подмодулей, потому что как множество прямая сумма $L \oplus L$ состоит из множества пар вида $(n, l)$, где $n$ и $l \in M$, в отличие от $M$, который состоит не из таких пар.

Какой это изоморфизм мы не знаем, знаем лишь, что он есть. Это вполне может быть не изоморфизм сложения.

 
 
 
 Re: Разложение модуля в прямую сумму подмодулей
Сообщение21.11.2022, 23:06 
Я понял. Под равенством тут имеется именно изоморфизм сложения. Тогда всё будет работать.

 
 
 
 Re: Разложение модуля в прямую сумму подмодулей
Сообщение21.11.2022, 23:09 
Аватара пользователя
sour в сообщении #1570759 писал(а):
как множество прямая сумма $N \oplus L$ состоит из множества пар вида $(n, l)$, где $n \in N$ и $l \in L$
Вас не затруднит привести цитату из учебника, в котором это сказано? И не путаете ли Вы прямую сумму с внешней прямой суммой?

 
 
 
 Re: Разложение модуля в прямую сумму подмодулей
Сообщение22.11.2022, 03:27 
Anton_Peplov
http://gorod.bogomolov-lab.ru/ps/stud/a ... _total.pdf
6.1.1-6.1.2

 
 
 
 Re: Разложение модуля в прямую сумму подмодулей
Сообщение22.11.2022, 11:32 
Аватара пользователя
sour в сообщении #1570822 писал(а):
http://gorod.bogomolov-lab.ru/ps/stud/a ... _total.pdf
6.1.1-6.1.2
Да уж. Мазохизм еще тот. В классических учебниках, насколько я помню, вся разница между $N + L$ и $N \oplus L$ в том, что элементы второго представимы в виде суммы элементов $N$ и $L$ единственным образом, а элементы первого - вообще говоря, не единственным. Поскольку $N, L$ - подмодули одного модуля, сложение элемента $N$ и элемента $L$ определено и нет никакого смысла рассматривать элемент прямой суммы как пару.

Ну ок. Рассмотрите множество $P \subset N + L$ всех элементов, представимых в виде суммы элементов $N$ и $L$ единственным образом. Докажите, что оно изоморфно по сложению $N \oplus L$ в вашем определении. И дальше проведите все доказательства для $P$.

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group