2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение22.01.2022, 01:18 
Модератор
Аватара пользователя


11/01/06
5711
Постройте бесконечную серию положительных целых чисел $k$, для которых $(k+1)^4$ имеет делитель сравнимый с -1 по модулю $k$.

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение22.01.2022, 05:08 
Заслуженный участник


20/12/10
9179
То есть, найти бесконечно много таких пар $(k,l)$ натуральных чисел, что дробь $$\frac{(k+1)^4}{kl-1}$$ есть целое число. Последнее эквивалентно тому, что дробь $$\frac{k^2+l^2+4k+4l+6}{kl-1}$$ есть целое число. Не исключено, что можно описать все такие пары $(k,l)$ (не смог найти ни одной $(k,l)$, для которой целое значение этой дроби было бы больше $23$). Вот более простой (надеюсь, что только технически) пример такого рода: дробь $$\frac{k^4-k^2+1}{kl-1},$$ для которой можно найти все пары $(k,l)$ натуральных чисел, приводящие к целым значениям этой дроби.

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение22.01.2022, 06:08 
Модератор
Аватара пользователя


11/01/06
5711
nnosipov, всё так. Остался последний шаг, а если точнее "прыжок" :-)

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение22.01.2022, 06:54 
Заслуженный участник


20/12/10
9179
maxal
Получается, что можно получить полный аналог результата отсюда: Mills W.H. A method for solving certain diophantine equations // Proc. Amer. Math. Soc. 1954. V. 5. P. 473—475. Здесь нужно побороться за точную оценку целочисленных значений дроби $$\frac{x^2+y^2+ax+by+c}{xy-1}.$$ Что-то типа $2a+b+c+5$ при условии $a \geqslant b \geqslant 0$, $c \geqslant 1$ и оба числа $a^2-4c$, $b^2-4c$ не являются точными квадратами.
maxal в сообщении #1546787 писал(а):
"прыжок"
Можно, конечно, и так, но у меня здесь своя теория. Но это уже вопрос вкуса технологий. Подозреваю, что на выходе результаты будут примерно одинаковыми.

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение22.01.2022, 07:08 
Модератор
Аватара пользователя


11/01/06
5711
nnosipov, да должно получиться. Только вот я не вижу прыжков в случае $a\ne b$.
Не знаю, что вы имеете в виду под своей теорией, но прыжки Виета - вполне устоявшийся термин.

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение22.01.2022, 07:29 
Заслуженный участник


20/12/10
9179
maxal в сообщении #1546790 писал(а):
прыжки Виета - вполне устоявшийся термин
Да, я это и имел в виду. Мой подход основан на поиске "базисных решений" уравнения вида $u^2-muv+v^2=B$. Результат Милса (с точной оценкой) получается относительно легко, это я уже давно сделал. Думаю, что это доказательство модифицируется на Ваш случай. Но надо, конечно, его аккуратно записать. Как сделаю, поделюсь.

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение22.01.2022, 14:02 


26/08/11
2150
nnosipov в сообщении #1546786 писал(а):
не смог найти ни одной $(k,l)$, для которой целое значение этой дроби было бы больше $23$).
Не будет, из-за условия для минимального решения $k_0 \le 1+\dfrac{8}{n-2}$, , где $n$ - целое значение дроби. Тоесть, при $n>10$ должно существовать решение $l=1$, откуда $n \in \{14,16,23\}$
Остальные $n\le 10$, для которых существуют решения (серии решений): $3,4,6,7,10$

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение22.01.2022, 16:34 
Модератор
Аватара пользователя


11/01/06
5711
Shadow, всё так. Ещё можно заметить, что частные 16 и 23 дают по две последовательности, а остальные по одной. То есть все искомые $k$ образуют объединение 10 линейных рекуррентностей второго порядка.

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение23.01.2022, 19:05 
Модератор
Аватара пользователя


11/01/06
5711
Добавил в OEIS последовательность A350916 значений $k$ и 10 рекуррентных последовательностей её образующих.

Кстати, для больших степень $k+1$ есть свои серии решений. Например, для $(k+1)^6$ частной серией решений является A001570. Вполне допускаю, что до 6й степени их также можно полностью описать - по аналогии с
maxal в сообщении #820090 писал(а):
maxal в сообщении #135812 писал(а):
найдите такие пары простых чисел $p,q$, что $p|(1+q^3)$ и $q|(1+p^3).$

Без требования для $p,q$ быть простыми, эта задача рассматривается в статье:
S. P. Mohanty, A system of cubic diophantine equations, Journal of Number Theory 9(2), 1977, 153–159.

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение23.01.2022, 19:44 
Заслуженный участник


20/12/10
9179
maxal в сообщении #135812 писал(а):
найдите такие пары простых чисел $p,q$, что $p|(1+q^3)$ и $q|(1+p^3).$
Черт, я недавно заново придумал эту задачу, совершенно забыв про этот пост :facepalm: Ну ведь хорошая задача получилась-то.

maxal, а Вы ее где-нибудь (кроме dxdy) публиковали?

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение23.01.2022, 21:51 
Модератор
Аватара пользователя


11/01/06
5711
nnosipov в сообщении #1546912 писал(а):
думал эту задачу, совершенно забыв про этот пост :facepalm: Ну ведь хорошая задача получилась-то.

maxal, а Вы ее где-нибудь (кроме dxdy) публиковали?

Я вашу задачку не видел, а то бы вспомнил "свою". Я её нигде не публиковал, но я теперь и не уверен, что я ее сам придумал, а не где-то подсмотрел.

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение23.01.2022, 22:38 


24/12/13
355
Я видел задачу $pq| p^3+q^3+1 в KöMal

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение24.01.2022, 09:46 
Заслуженный участник


20/12/10
9179
maxal в сообщении #1546926 писал(а):
Я вашу задачку не видел
А я ее здесь не публиковал, надеясь, что пригодится для какой-нибудь олимпиады. Теперь уже нет :-)

rightways
Спасибо. А не дадите точную ссылку? Это, наверное, еще и на венгерском.

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение25.01.2022, 01:44 


24/12/13
355
https://www.komal.hu/feladat?a=feladat&f=A677&l=en

Тут решение не опубликовано

Хорошая задача на спуск Виета

 Профиль  
                  
 
 Re: (k+1)^4 имеет делитель ≡ -1 (mod k)
Сообщение25.01.2022, 08:59 
Заслуженный участник


20/12/10
9179
rightways
Спасибо.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 16 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: vicvolf


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group