Позвольте вернуться чуть-чуть назад. Вы писали:
мы можем расположить в столбик все F-числа по порядку их дескрипторов. Обозначим это упорядоченное множество через
. Теперь рассмотрим следующий текст:
"Построим следующее число
. Целая часть его равна 0. Все цифры после запятой равны 4 или 5 по правилу: если энная цифра энного числа из множества
равна 4, то энная цифра числа
равна 5, а если энная цифра энного числа из множества
не равна 4, то энная цифра числа
равна 4. И так для всех n=1,2,3,4,..."
Казалось бы данный текст однозначно описывает некоторое число
, причем это число не принадлежит множеству
. Но это не так. Поскольку данный текст конечен, и если он является дескриптором числа
, то это число
находится во множестве
под каким-то номером
. И какая же цифра в нём находится на "катом" месте после запятой? Ответ - не та, что находится на "катом" месте. То есть бессыслица, принеси мне то, чего не может быть. Но это не парадокс, просто данный текст на самом деле не описывает никакое число.
Как это так "но это не парадокс"? Это именно парадокс в чистом виде. Т.е. когда два формально верных рассуждения приводят к различным результатам, чего не может быть. Вот они родимые в явном виде:
1) Поскольку данный текст конечен ... то число b находится во множестве B.
2) И какая же цифра ... на "катом" месте...? Ответ - не та, что находится на "катом" месте.
Парадокс - это вовсе не "бессмыслица"!
А текст описывает-таки именно число, а не "не описывает никакое число". Ибо мы ж договорились, что однозначный алгоритм построения числа вполне является конечным дескриптором (типа ноль, запятая, 1234567891011121314 и т.д.)
Просто мы имеем дело с условным описанием, ибо "диагональное" число конструируется при условии, что мы _уже_ можем упорядочить конечные описания в бесконечный, но "счетный" столбик в алфавитном порядке, скажем. В сущности это ровно тот же парадокс, что и в известном "описании не более чем 10 словами", только несколько усложненный перенесением с конечного множества на счетное бесконечное. Но смысл тот же самый! И состоит он в том, что не поставив четких и недвусмысленных границ понятию "описание" или "конечный дескриптор" мы неизбежно нарвемся на нечто, что парадоксально принадлежит и множеству "В" и множеству "не В".
Вы же, как только нечто подобное нашлось, говорите "бессмыслица" и "это не число". А на каком основании? Выходит, только на том, что оно не вписывается в вашу же схему. И обвиняете в бессмысленности не огонь, а дым - не причину, а следствие. Парадокс - лишь следствие некоего упущения в схеме. От него нельзя просто так отмахнуться, бездоказательно обозвав бессмыслицей.
На самом деле вообще-то это просто доказательство от обратного:
- Положим, что конечных дескрипторов счетное множество (казалось бы, очевидно).
- Тогда упорядочим их так-то и так-то.
- Покажем, что найдется еще одно число, имеющее конечный дескриптор, но ранее не учтенное нами.
- Противоречие.
- Следовательно, что-то не так с самим понятием "конечный дескриптор"!
И вы сами это доказали, но предлагаете "индивидуально разбираться со спорными дескрипторами". Упс... Разве не логичнее сперва вполне точно разобраться с самим определением, а не предлагать индивидуально рассматривать бесконечное множество "исключений из правила", порожденных несовершенством самого правила?
-- 24.07.2021, 19:41 --И это как раз напрямую относится к пункту 3, о необсуждении которого вы сожалели:
3. Множество дескрипторов чисел счетно