2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение23.04.2021, 10:53 
Хотелось бы узнать. Где в этих рассуждениях ошибка?
Четное число можно представить суммой или разностью нечетных. Пусть будет сумма. Что принципиально неважно.
Согласно Гипотезе Била в уравнении $V=P+R $, взаимно простые числа $V,P,R$ не могут быть степенями натуральных чисел с произвольными показателями больше 2.
Действительно, если $P+R$ - степень с указанными свойствами, тогда в следующем уравнении$$P=\frac {P+R}{2}+\frac {P-R}{2}\qquad (1.z)$$выражение $(P+R)/2$ не является степенью. Числа $P,R$ произвольные. Уравнение (1.z) исчерпывает все возможные случаи Уравнения Била.Следовательно Гипотеза Била доказана.
Квадраты не попадают под это докво, так как для них существует уравнение $V^2=P^2-R^2=(P+R)(P-R)$. В котором ни $(P+R)$, ни $(P-R)$ не являются квадратами. Но $(P-R)/2$ и $(P-R)/2$ могут быть квадратами, либо их произведение - квадрат. Например $12^2=13^2-5^2 =18\cdot 8$.

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение23.04.2021, 16:34 
Я не понял, почему число
binki в сообщении #1515354 писал(а):
выражение $(P+R)/2$ не является степенью

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение23.04.2021, 19:42 
Уважаемый Antoshka
Если существовало бы решение для уравнения $V=P+R$, то $(P+R)$, было бы степенью четного числа. Любая составная степень четного числа деленная на 2 не является степенью. В случае не составной четной степени, то есть степени числа 2, после деления на 2 мы получили бы меньшую четную степень числа 2. Тогда бы существовало Уравнение Била (1.z) с меньшей четной степенью чем в исходном уравнении $V=P+R$. И появился бы бесконечный спуск.

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение24.04.2021, 04:31 
binki
Совет: если Вы хотите, чтобы Вас хоть кто-то понял и действительно нашел ошибку, постарайтесь писать меньше слов. У меня впечатление, что Вы не вполне понимаете, что говорите, вернее, как это звучит для стороннего человека.
Пишите формулы. И все обозначения расшифровывайте.

И еще. Вы всерьез думаете, что проблема, оцененная в миллион долларов, решается рукомаханием за две строки, но за 20 лет до этого никто не додумался? Вот просто включив здравый смысл?

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение24.04.2021, 08:22 
Аватара пользователя
Lia

(Оффтоп)

Lia в сообщении #1515478 писал(а):
Вы всерьез думаете, что проблема, оцененная в миллион долларов, решается рукомаханием за две строки, но за 20 лет до этого никто не додумался?
Почему бы и нет? То, что сразу навскидку пришло в голову, это знаменитая теорема Дирихле о простых в арифметических прогрессиях.
Формулировка теоремы элементарна, но доказательство самого Дирихле было отнюдь не элементарно. Он для этого привлёк самые совершенные (для того времени) методы анализа с использованием производящих функций, конечных сумм, функции характер Дирихле и пр.
И в течение долгих лет не было видно никаких элементарных подходов к доказательству этой замечательной теоремы. И только в 1949 г. (через 112 лет после Дирихле!) Атле Сельберг доказал её методами элементарной математики, доступными любому школьнику. После были получены ещё несколько элементарных доказательств.
Интересно, если бы тогда, в 1837 г., эту проблему оценили бы в миллион, это ускорило бы процесс?
Так что я вполне понимаю ферматистов. Со времени сложнейшего доказательства Уайлса прошло всего 27 лет. Время есть. :-)

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение24.04.2021, 10:54 

(Оффтоп)

Gagarin1968 в сообщении #1515483 писал(а):
Атле Сельберг доказал её методами элементарной математики, доступными любому школьнику

Только доказательство это, я думаю, было совсем не в две строки.

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение24.04.2021, 14:11 
Аватара пользователя
Когда $P=R$, то $n=0$.
binki в сообщении #1508703 писал(а):
Что принципиально не важно, при свободе обозначения чисел в (1). Тогда сумма и разность этих чисел четны. $$P + R = V = 2m; \qquad P-R = 2n \quad (2) $$ Из (2) имеем $$m + n = P; \qquad m-n = R\qquad (3)$$

А это сводит на нет все дальнейшие рассуждения автора (-ов). ИМХО.

P.S. Автор, похоже, избегает обозначать «общепринятую» формулировку гипотезы Била.

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение26.04.2021, 10:32 
binki в сообщении #1515438 писал(а):
Если существовало бы решение для уравнения $V=P+R$, то $(P+R)$, было бы степенью четного числа

Я не очень понимаю, зачем вообще нужно было вводить такие странные переменные. Не проще записать так? Имеем уравнение $A^x+B^y=C^z$. Нужно доказать, что оно не имеет решений в натуральных взаимно простых попарно числах, когда $x,y,z>2$. Доказательство от противного. Вы представляете левую часть данного уравнения как $A^x=(C^z+R)/2,B^y=(C^z-R)/2$. Я не понимаю, почему $C$ должно быть четным?

-- 26.04.2021, 10:33 --

binki в сообщении #1515438 писал(а):
Если существовало бы решение для уравнения $V=P+R$, то $(P+R)$, было бы степенью четного числа

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение26.04.2021, 11:27 
Уважаемый Lia!
Я постараюсь учитывать Ваш совет по более детальному рассуждению в получении каких либо выводов. Попытка открытия новой темы была связана с несколько измененным подходом к решению задачи и по причине перегрузки текущей темы ​сообщениями не относящими к рассматриваемому вопросу.

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение27.04.2021, 20:06 
Рассматривается самое общее уравнение с тремя, взаимно простыми неизвестными.
$$V=P_0+R_0 \qquad (1)$$ По Гипотезе Била необходимо доказать, что переменные $(V,P_0,R_0)$ не могут быть степенями натуральных чисел с индивидуальными для каждой степени произвольными показателями больше 2 (далее по тексту «степень с заданным свойством»). Иначе говоря, никакая четная степень не может быть представлена суммой или разностью других степеней с заданным свойством. (Обозначения переменных выбрано таким, потому что это созвучно со словами «взаимно простые»)
Такой подход более логичен, чем подход, при котором в уравнении с показанными степенями доказывается, что степеней там не может быть.
В поисках доказательства основное внимание уделялось известным простым свойствам чисел при элементарных действиях с ними. Особый интерес - нечетные числа.
Все нечетные могут быть представлены числами вида $4k \pm 1$. Поэтому возможны два варианта для суммы и разности одной и той же пары нечетных чисел:
- сумма - число вида $4k$, а разность - число вида $4k \pm 2$.
- сумма - число вида $4k \pm 2$, а разность - число вида $4k$. Очевидно, что числа вида $4k \pm 2$ не могут быть степенями, в том числе и квадратами.
Так как показатели степеней больше 2, то четная степень будет числом вида $8k$, что соответствует виду чисел представляющих разность нечетных квадратов. Действительно нечетные квадраты являются числами вида $8k+1$. Следовательно, их разность является числом вида $8k$. Таким образом, четное число $$V=8k=(P^2-R^2)=(P+R)(P-R) \qquad (2)$$ где $(P,R)$ пара нечетных чисел.
Сумма и разность нечетных – четные числа $$P+R=2m; \qquad P-R=2n \qquad (3)$$ Значит $$m=\frac {P+R}{2}; \qquad n=\frac {P-R}{2} \qquad (4)$$ Так как $P,R$ нечетные и взаимно простые, то числа $m,n$ также взаимно простые, но разной четности. Тогда $$m+n=\frac {P+R}{2}+ \frac{P-R}{2}=P; \qquad (5)$$ $$ m-n =\frac {P+R}{2}-\frac {P-R}{2}=R; \qquad (6)$$
Согласно (3), уравнение (2) примет вид $$V=(P+R)(P-R)=2m 2n \qquad (7)$$ Откуда $$V/4=mn=(\frac {P+R}{2})(\frac {P-R}{2})\qquad (8)$$ Если в (7) число $V$ -степень натурального числа с нечетным показателем, то $V/4$ - не может быть такой степенью, но может быть квадратом. Действительно, пусть $V$ составная степень $$V=2m 2n=2^{ks}m_1^s n_1^s\qquad (9)$$ где $2^{ks}m_1^s=4m; \qquad n=n_1^s$
$$V/4=mn=2^{ks-2} m_1^s n_1^s\qquad (10)$$
Так как $s>2$, то $ks-2$ не дeлится на $s$. Значит показатель при двойке не кратен $s$ и следовательно составное число $2^{ks-2}m_1^s$ не является степенью с нечетным показателем $s$.

Это означает также, что $m=\frac {P+R}{2}$, не являются степенью с заданным свойством.

Вывод сделан в предположении, что $V$ - составная степень. Если же четная степень - степень числа 2, то после деления на 4 получилась бы меньшая четная степень числа 2. Тогда бы существовало Уравнение Била с меньшей четной степенью, чем в исходном уравнении (1). И появился бы бесконечный спуск
Так как числа $P,R$ произвольные, то (5) (6) представляет все возможные случаи общего уравнения (1).Отсюда вытекает вывод, что ни (5) ни (6) не поставляют степеней с нечетными показателями для решения уравнения Била.
Для полного доква Гипотезы Била остаётся показать, что не существует решения для степеней с четными показателями больше 2. Это будет сделано несколько позже.

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение28.04.2021, 14:54 
Итак, показано, что $V/4$ не может быть степенью со значением показателя равным $s$.
Однако, если $$m_1=m_2^{ks-2}; \qquad n_1=n_2^{ks-2 },$$ то $V/4$ будет степенью с показателем $ks-2$. Действительно в этом случае $$V/4=2^{ks-2} (m_2^s)^{ks-2} (n_2^s)^{ ks-2}=mn \qquad (11)$$ Значит числа $m,n$ - степени с показателем $ks-2$
Уравнения (5), (6) становятся новыми уравнениями с четной степенью $V/4<V$.
Показатель $ks-2$ нечетный. Значит нечетное $k>1$. Отсюда $V/4>8$. Следовательно существует бесконечный спуск. Cпуск конечный при $$V/4=8=3^2-1 \qquad (12),$$ что не является решением Уравнения Била.
Теперь можно считать, что для нечетных показателей Гипотеза Била доказана.
Пусть четная степень с заданным свойством имеет четный показатель $$V=2^{2ks} m_1^{2s}n_1^{2s}=4mn \qquad (13)$$ $$V/4=2^{2ks-2}m_1^{2s}n_1^{2s}=(2^{ks-1})^2(m_1^s)^2 (n_1^s)^2=(2^{2ks-1}m_1^s n_1^s)^2 \qquad (14)$$ Как видно из (14) показатель $2ks-1$ не делится на $s$, поэтому $V/4$ не является степенью с четным показателем $2s$.
Но если $m_1=m_2^{2ks-1}; \qquad n_1=n_2^{2ks-1}$, то $V/4$ будет степенью с четным показателем равным $2(2ks-1)$. Аналогично, как для степеней с нечетным показателем в этом случае появится бесконечный спуск.
Следовательно, Гипотеза Била полностью доказана.
Необходимо отметить, что для уравнения с квадратами невозможно организовать бесконечный спуск. Так как для квадратов из всех существующих решений имеется известное минимальное $3^2+4^2=5^2$

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение28.04.2021, 17:17 
При чем тут $V/4$ когда вы должны доказать свойство $V$?

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение29.04.2021, 10:48 
Если в 9 взять $4m=2^{ks+2}m^s$

и $n=n_1^s$ то у вас $V/4=2^{ks}m^sn^s$ и тогда $ks$ делится на $s$

-- 29.04.2021, 10:52 --

Таким образом у вас подгон под доказательство, а не доказательство

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение30.04.2021, 09:56 
Уважаемый nimepe

(Оффтоп)

Зачем Вы себя так дискредитируете. Делаете ошибочные рассуждения в элементарном. Деление степени на 4 даёт бесконечный спуск.
Такой приём использован в известном докве для биквадратов.
В другом случае предлагаете $4m=2^{ks+2}$. В этом случае исходное число $V$ сразу не является степенью с наперед заданным показателем $s$. И ничего доказывать уже не надо.

 
 
 
 Re: Проблема док-ва Гипотезы Била.
Сообщение30.04.2021, 10:34 
Уважаемый автор темы! Уравнение гипотезы Била ведет себя очень интересно(изложено в книге ISBN 978-5-9927-0082-4 и книге "Теория решения уравнения $A^x+B^y=C^z$ в целых числах."Оно уравнение как может иметь решение ,так и не иметь решения.Даже на вашем "доказательстве " это видно, если поменять значения $m$

 
 
 [ Сообщений: 50 ]  На страницу Пред.  1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group