2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: ПИзозойская Эра
Сообщение15.03.2020, 21:07 
fred1996 в сообщении #1444962 писал(а):
Мы живем в квантованом мире. Так что и пи на самом деле квантовано. И вообще иррациональных чисел не существует. Поскольку все проквантовано до нас. А идеальный круг - это зубчатое колесико с квантоваными зубцами.
Если вы серьёзно, то оно так не работает.

 
 
 
 Re: ПИзозойская Эра
Сообщение15.03.2020, 21:13 
Утундрий
Если ряд сходится медленно, то сумма соседних членов ряда близка к $\pi$, значит удалив любые два члена подряд мы не сильно изменим всю сумму (возможно нужны ещё условия на ряд кроме знакопеременности и медленной сходимости). Удалив один член больше $\pi$ и один меньше $\pi$, не обязательно подряд, сумма изменится тоже не сильно (хоть вероятно и больше чем когда подряд). Так как Вы уже заложили конечную точность суммы, то флуктуации суммы вокруг точного значения допустимы.
От случайного выбора нескольких чисел это отличается тем что сумма ряда более-менее сохраняется (если не выдёргивать почти все элементы или слишком одностороннее). Т.е. особи получаются не совершенно произвольные, а вокруг правильного значения $\pi$. Зато их существенно больше разных экземпляров, чем если лишь усекать ряд.

 
 
 
 Re: ПИзозойская Эра
Сообщение15.03.2020, 21:18 
Dmitriy40 в сообщении #1445003 писал(а):
Если ряд сходится медленно, то сумма соседних членов ряда близка к $\pi$

Почему?

 
 
 
 Re: ПИзозойская Эра
Сообщение15.03.2020, 21:25 
kotenok gav в сообщении #1445005 писал(а):
Почему?

Это следствие великой теоремы Ферма..

"Не только лишь все могут это понять. Мало кто может это делать!".. :mrgreen:

Кстати, хотелось бы увидеть определение "медленно сходящегося" ряда..

 
 
 
 Re: ПИзозойская Эра
Сообщение15.03.2020, 21:41 
Аватара пользователя
Dmitriy40
Вы, наверное, пропустили фокус-покус имени (кажется) Эйлера. Разные особи - это разные разбиения $\pi / 4$ на сумму углов, тангенсы которых суть аликвотные (египетские) дроби. И таких разбиений фиксированной длины $a$-шек, мягко говоря, изрядно много. Поэтому и генетический алгоритм.

 
 
 
 Re: ПИзозойская Эра
Сообщение16.03.2020, 13:51 
Позволю себе вспомнить про один (правда, двойной) ряд для числа $\pi$, который я уже приводил ранее: http://dxdy.ru/post1388068.html#p1388068 Его можно суммировать как угодно (потому что он сходится абсолютно), но удобнее по квадратам $\Lambda_N=\{m+ni:|m| \leqslant N,|n| \leqslant N\}$, которые исчерпывают всю решетку целых комплексных чисел $\Lambda=\{m+ni:(m,n) \in \mathbb{Z}^2\}$. Пусть $S_N$ --- частичная сумма ряда, соответствующая квадрату $\Lambda_N$. Ряд содержит параметр $\beta$ --- произвольное комплексное число, не принадлежащее $\Lambda$. При некоторых значениях $\beta$ суммы $S_N$ быстрее стремятся к своему пределу (числу $\pi$), а при других --- медленнее. Так вот, предлагается угадать, при каких $\beta$ сходимость оказывается наиболее быстрой (таких значений $\beta$ всего два).

Заранее пардон, если влез с несерьезным вопросом в серьезную тему.

 
 
 
 Re: ПИзозойская Эра
Сообщение16.03.2020, 19:28 
Аватара пользователя
nnosipov в сообщении #1445115 писал(а):
Заранее пардон, если влез с несерьезным вопросом в серьезную тему.
Особенно это умиляет после... эээ... не будем тыкать пальцами и скажем "некоторых" комментариев :mrgreen: У меня, допустим, есть некоторая концепция, ну и что - тут же реализовать, забыть и выбросить? Так что любое влезание приветствуется.
nnosipov в сообщении #1388068 писал(а):
Пусть $\Lambda$ --- решетка целых гауссовых чисел (на комплексной плоскости) и $\beta \not\in \Lambda$. Тогда$$\pi=\frac{1}{\beta}+\frac{1}{1-\beta}+\sum_{0 \neq \alpha \in \Lambda}\left(\frac{1}{\alpha+\beta}+\frac{1}{1-\alpha-\beta}+\frac{1}{\alpha^2}\right).$$
Эта $1/{\alpha^2}$ оставлена под знаком суммы для регуляризации?

 
 
 
 Re: ПИзозойская Эра
Сообщение16.03.2020, 19:51 
Утундрий в сообщении #1445145 писал(а):
Эта $1/{\alpha^2}$ оставлена под знаком суммы для регуляризации?
Для абсолютной сходимости ряда.

 
 
 [ Сообщений: 23 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group