Чтобы не возникли недопонимания терминологического характера, отмечу, что под сечением я буду понимать то определение, которое привел ТС в стартовом сообщении (с оговоркой о непустоте множеств).
Раз уж речь зашла про построение вещественных чисел следуя Дедекинду, то стоит сказать пару слов о его теории. Дедекинду присваивают создание перовой строгой теории вещественных чисел, но на мой взгляд, его заслуга не столько в этом, сколько в рассмотрении самой сущности того понятия, которое мы называем непрерывностью, говоря о каком-либо линейно-упорядоченном множестве. До него было принято руководствоваться геометрическими соображениями: под непрерывностью понимали то, что присуще прямой линии. Понятно, что никакой строгости при таком подходе и близко нету. Дедекинд понял, что идея непрерывности к прямой не привязана. Он предложил считать линейно упорядоченное множество непрерывным тогда и только тогда, когда любое сечение этого множества всегда замкнуто ровно с одной стороны (по простому: когда нету "скачков" и "пробелов").
Теперь по поводу вещественных чисел. Да простит меня Кронекер, числа не даны нам Богом. Мы их придумываем сами, чтобы описывать окружающие нас явления и решать поставленные перед нами задачи. Числа - это всего лишь модели. Хотим считать кабанов - нам даже натуральных чисел много. Хотим поделить три кабана на пять человек - нужны рациональные числа. Хотим посчитать максимально возможную годовую прибыль при 100% годовых и максимальной частоте капитализации процентов, нужны вещественные числа. Хотим брать сложные интегралы (что само по себе является задачей вещественного анализа) - нужны комплексные числа. Вообще, это непраздный вопрос: являются ли вещественные числа наилучшей моделью для описания задач, которые они собственно описывают. Может быть можно придумать какие-то другие числа, которые лучше описывают, например, задачи, связанные с физической реальностью? В любом случае, это не вопросы матана. Вот есть у нас рациональные числа. Все на первый взгляд прекрасно: они замкнуты относительно четырех основных операций, интуитивно понятны - красота. А на второй взгляд уже не так прекрасны: даже простейших корней нету. Вспоминаем Дедекинда и видим, что рациональные числа не обладают тем, что мы называем непрерывностью. И нам оказывается их мало. Что мы хотим? Мы хотим иметь какое-то линейно упорядоченное поле, которое было бы непрерывным. Если хотим - пусть будет
Сформулируем список требований (аксиом) и дело в шляпе. Вот только надо сделать еще парочку действий. Во-первых, нужно собственно такой набор объектов, с определенными на них операциями, предоставить (непротиворечивость). Во-вторых, надо убедиться, что полученная система аксиом категорична, т.е. все модели ею определяемые будут изоморфны. Второе в курсах анализа обычно не делают, но это можно принять на веру (и доказать в курсе алгебры): нам повезло, система аксиом непрерывного линейно-упорядоченного поля категорична. А вот первое надо бы сделать.
И тут начинаются странные (лично для меня) вещи. Я уже не первый раз замечаю, что вещественные числа отождествляют с сечениями в области рациональных, что имхо не очень правильно. То, что в области рациональных чисел существуют сечения типа "пробел" говорит о том, что рациональные числа не являются непрерывными. То, что в области вещественных чисел любое сечение всегда замкнуто с одной стороны и открыто с другой, говорит о непрерывности вещественных чисел. Но почему мы стали вдруг считать, что те объекты, из которых состоит наше непрерывное упорядоченное поле, это сами сечения? Сечения - это лакмусовая бумажка непрерывности. Почему их стали отождествлять с самими вещественными числами? Объекты поля могут быть любыми, главное чтобы они вместе с операциями существовали и удовлетворяли аксиомам непрерывного упорядоченного поля. Можно ли в качестве объектов взять все сечения в области рациональных чисел? Наверное можно, только придется хорошо подумать, как определить операции. А можно взять не все сечения, а только те, у которых нижний класс открыт. И тогда операции будет определить проще. А можно вообще брать не сечения, а такие множества
:
1.
,
,
2.
3. в
нет наибольшего числа.
Я подозреваю, что корни такой трактовки растут из нулевой главы первого тома в трехтомнике Фихтенгольца (которая называется "Введение. Вещественные числа").
Фихтенгольц писал(а):
Не вводя для иррациональных чисел никаких однотипных обозначений, мы неизменно будем связывать иррациональное число
с тем сечением
в области рациональных чисел, которое его определяет. Для однообразия нам часто удобно будет то же сделать и по отношению к рациональному числу
. Но для каждого числа
существует
два определяющих его сечения: в обоих случаях числа
относятся к нижнему классу, числа же
- к верхнему, но само число
можно по произволу включить либо в нижний класс (тогда
там будет наибольшим), либо в верхний (и
там будет наименьшим). Для определенности мы условимся раз навсегда, говоря о сечении, определяющем рациональное число
, включать это число в
верхний класс.
Я считаю, что необходимо строго различать сечения как объекты непрерывного упорядоченного поля и сечения, как инструмент, которым мы пользуемся, когда мы хотим понять, является ли множество непрерывным. У Фихтенгольца это различие стерто. Где-то в этом месте и возникло непонимание у ТС-а. Не удивлюсь, если ТС читает про сечения у Фихтенгольца.