тут правда уже комплексные степени лезут,
Проблема будет - когда станем считать обратное пр-е Фурье...
TelmanStudРешение можно попробовать искать в виде суммы степенного ряда (с центром в нуле). Это сразу дает простые реккурентные соотношения на коэф-ты ряда. Находя их, получим ответ (в виде ряда. К сожалению, ряд не сворачивается).
Ряд этот сходится (если альфа по модулю не больше 1; иначе - расходится). Сумма его - хорошая ф-я (целая, голоморфная на всей плоскости). При

, это будет вообще суперфункция какая-то (трансцендентная, но нулевого порядка) - ничего элементарного близко не лежало. Если альфа - корень из единицы - выразится через экспоненты. Если по модулю равно 1, но не корень из 1 - тоже порядка 1, но не элементарна.
Есть кое что про общую теорию уравнений с запаздыванием-опережением - посмотрите в Гугле, напр., но там общие вопросы существования-единственности рассматривают обычно. И - с извращенными начальными условиями. Причина - ясна: если искать не аналитические решения, а, скажем, только 1-гладкие, то можно на отрезке
![$[\alpha,1]$ $[\alpha,1]$](https://dxdy-04.korotkov.co.uk/f/3/c/4/3c486a690511435fd3687eae8c88927682.png)
задать функцию произвольно (почти: чтобы только непрерывность с производными была), а дальше продолжить все исходя из уравнения
Про нелинейные уравнения - там все еще хуже