Пусть у нас имеется бесконечная влево последовательность единиц. Правую часть последовательности будем строить следующим образом. Первое число равно сумме двух предыдущих, второе - сумме трёх предыдущих, третье - сумме пяти предыдущих, 4-е равно сумме 7 предыдущих, ... энное равно сумме 

 предыдущих, где 

 - энное простое число. 
Вот как выглядит начало правой части этой последовательности, назовём её "Непростые Фибоначчи": 
2 4 9 19 41 83 169 ...
Для обычных чисел Фибоначчи формула найдена давно. Как и для некоторых обобщений Фибоначчи (Трибоначчи и др.) А как найти формулу для "Непростых Фибоначчи"?