2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Неравенство 23.
Сообщение12.07.2018, 14:55 
Для положительных $(a_1,a_2;x_1,x_2)$ и $\frac{1}{x_1}+\frac{1}{x_2}=1$ докажите неравенство

$$\frac{a_1^{x_1}+a_2^{x_2}}{a_1a_2}\ge2$$

Это неравенство является усилением здешнего неравенства в соседней теме при $n=2$ (т.е. при количестве переменных четыре).

(Оффтоп)

У меня есть доказательство в чуть более пары строк, но очень простое (доступное среднему школьнику).
Мне это неравенство интересно тем, что оно является хорошей иллюстрацией моей гипотезы об экстраполяции (всё сходится; в этом случае экстраполировать по переменной $(n)$ нельзя, т.к. выполняются не все условия и контрпример при, например, $n=3$ легко находится: левая часть неравенства (при трёх слагаемых в числителе и трёх сомножителей в знаменателе) не всегда больше трёх)
.

 
 
 
 Re: Неравенство 23.
Сообщение12.07.2018, 15:16 
Аватара пользователя
TR63 в сообщении #1326212 писал(а):
У меня есть доказательство в чуть более пары строк
Замечательно!
А калькулятор у Вас есть? Попробуйте посчитать такое: $\frac{0.5^{3/1}+0.5^{3/2}}{0.25}$

 
 
 
 Re: Неравенство 23.
Сообщение12.07.2018, 16:53 
grizzly, посчитала без калькулятора. Вы правы. Спасибо. Правда, я рассматривала разные случаи, когда есть максимум в паре $(a_1;a_2)$. Случай отсутствия максимума, значит следует исключить из области определения.
1).$\max(a_1;a_2)=a_2\ge1$, $x_2\ge x_1$, $1\le x_1\le2$, $x_2\ge2$.
Из АМ-ГМ имеем усиление $2(\frac{a_2^{\frac{x_2-1}{2}}}{a_1^{\frac{2-x_1}{2}}})\ge2$
2).
3).
Будет ли контрпример при наличии максимального в паре.

 
 
 
 Re: Неравенство 23.
Сообщение12.07.2018, 17:00 
TR63
$a_1=1;a_2=3;x_1=11;x_2=1,1$

 
 
 
 Re: Неравенство 23.
Сообщение12.07.2018, 17:27 
2).$\max(a_1;a_2)=a_2\le1$, $x_2\ge x_1$, $1\le x_1\le2$, $x_2\ge2$
3).$\max(a_1,a_2)=a_1$, $x_2\ge x_1$, $1\le x_1\le2$, $x_2\ge2$.
wrest, спасибо. (Похоже, что случай $x_2\le x_1$ я пропустила; если случаи $1-3$ верны, то посмотрю внимательнее.)
Будут ли контрпримеры к случаям $1-3$.

 
 
 
 Re: Неравенство 23.
Сообщение12.07.2018, 17:46 
Аватара пользователя
TR63
Вам чуть не хватает теоретической подготовки. Я поясню. Ваша функция (выражение слева) на рассматриваемом множестве непрерывно зависит от всех своих аргументов / параметров. И Вы должны понимать, что если неравенство не выполняется при $a_1=a_2$, то это неравенство также не будет выполняться, если $a_1$ уменьшить на достаточно малую величину. Вместо того, чтобы подумать об этом, Вы начинаете городить какие-то дополнительные условия. Говоря другими словами, если кто-то поленится найти очередной контрпример, это вовсе не будет значить, что неравенство справедливо.

 
 
 
 Re: Неравенство 23.
Сообщение12.07.2018, 18:02 
TR63
У меня рябит в глазах :mrgreen:
Вы с одной стороны даете формулу зависимости $x_1$ от $x_2$ (из $\frac{1}{x_1}+\frac{1}{x_2}=1$ следует $x_1=\dfrac{x_2}{x_2-1}$, а из того что они положительны следует что они больше единицы), а с другой накладываете ограничения типа $1\le x_1\le2$, $x_2\ge2$ второе из которых выполняется автоматически (вернее, неравенства должны быть строгие, если $x_1=1$ или $x_2=1$ то происходит деление на ноль а это делать низя). Так что у вас не четыре независимых переменных тут, а три :D

Мне кажется что при таком обилии условий олимпиадность теряется...

 
 
 
 Re: Неравенство 23.
Сообщение12.07.2018, 18:07 
grizzly, согласна. Я немного запуталась с тем, что надо доказать. Доказать надо неравенство из источника при $n=2$, но способом, отличным от источника. Исправила:
TR63 в сообщении #1326212 писал(а):
докажите неравенство

$$\frac{a_1^{x_1}+a_2^{x_2}}{a_1a_2}\ge\frac{x_1x_2}{x_1x_2-2}$$


Достаточно рассмотреть трёх предложенных мной случаев? Вроде случай $x_2<x_1$ отпадает, т.к. рассуждения будут аналогичны.

-- 12.07.2018, 19:25 --

TR63 в сообщении #1326212 писал(а):
Для положительных $(a_1,a_2;x_1,x_2)$ и $\frac{1}{x_1}+\frac{1}{x_2}=1$ докажите неравенство

 
 
 
 Re: Неравенство 23.
Сообщение12.07.2018, 18:34 
TR63 в сообщении #1326280 писал(а):
но способом, отличным от источника. Исправила:

И на это у вас есть доказательство в чуть более пары строк и доступное школьнику, верно?

 
 
 
 Re: Неравенство 23.
Сообщение12.07.2018, 19:02 
wrest, есть. Я это неравенство давно решала. Если никто не найдёт другое доказательство, то изложу (там, собственно, осталось, можно показать, рассмотреть второй случай; третий сводится к первым двум).

 
 
 
 Re: Неравенство 23.
Сообщение14.07.2018, 07:43 
TR63 в сообщении #1326293 писал(а):
третий сводится к первым двум

Т.е. необходимо и достаточно рассмотреть $x_2\ge x_1$?

Если бы этого было необходимо и достаточно, то имели бы однозначное общее свойство для трёх областей: $x_2\ge x_1$. Тогда результат из первой области гипотетически экстраполировался бы на оставшиеся области после разделения их на два не пересекающихся класса (в левом классе помещаем $x_2=x_1$). Но наличие контрпримеров говорит, что экстраполировать нельзя.
Действительно, нашла ошибку в своём доказательстве.

Но остаётся открытым вопрос: существует ли однозначное общее свойство, задаваемое с помощью двух операций (сложение/умножение), для трёх областей?

Для гипотетической экстраполяции по переменной $(n)$ общее свойство существует: $a_1^{x_1}+...+a_n^{x_n}\ge a_1...a_n$. Соответственно, гипотетически возможна экстраполяция с результата при $n=2$. Кстати, доказательство в источнике при $n=2$ вполне симпатичное.

Для области 2) при $a_1^{x_1}\le a_2^{x_2}$ верно $a_1^{x_1}+a_2^{x_2}\ge 2a_1a_2$

 
 
 
 Re: Неравенство 23.
Сообщение27.07.2018, 09:55 
TR63 в сообщении #1326631 писал(а):
Но остаётся открытым вопрос: существует ли однозначное общее свойство, задаваемое с помощью двух операций (сложение/умножение), для трёх областей?

Этот вопрос снимается, т.к. общее свойство существует. Но для экстраполяции (гипотетической) по областям, как минимум, надо рассмотреть ещё одну область, но не стоит это делать, поскольку интересует стандартное доказательство.

Однако у меня возник другой вопрос: верно ли усиленное неравенство

Для положительных $(a_1,a_2;x_1,x_2)$ и $\frac{1}{x_1}+\frac{1}{x_2}=1$ докажите неравенство

$$\frac{a_1^{x_1}+a_2^{x_2}}{a_1a_2}\ge\frac{x_1x_2+4}{x_1x_2}$$
С помощью АМ-ГМ для левой части можно получить область, где это неравенство верно. Но будет ли оно верно во всей области определения?

 
 
 
 Re: Неравенство 23.
Сообщение07.08.2018, 22:21 
То, что это неравенство верно во всей области определения, доказывается легко, если использовать идею, предложенную в источнике, т.к. тогда оно просто не будет усилением по отношению к неравенству доказанному в источнике. Такое неравенство, само по себе, не очень интересно.

Но возник новый вопрос: будет ли неравенство верно, если правая часть-произвольная дробно-рациональная монотонно убывающая функция $f(x_2\ge x_1)>1$ и $\max{f(x_2)}=2$.
Мне подобрать контрпример не удаётся.

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group