2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Странная динамическая система на плоскости: упорные центры
Сообщение03.04.2018, 11:19 
Аватара пользователя
Рассмотрим систему:
$$
\left\{\begin{aligned}
&\dot{x}=\sin(x)\cos(y)+\varepsilon\cos(x),\\
&\dot{y}=-\cos(x)\sin(y)+\varepsilon\cos(y).
\end{aligned}\right.
$$
При $\varepsilon=0$ она вполне интегрируема, $H(x,y)=\sin(x)\sin(y)$ и центры располагаются в центрах клеток шахматной доски ($\sin(x)\sin(y)=\pm 1$) а седла--в вершинах $\cos(x)\cos(y)=\pm 1$).

При $0<\varepsilon\ll 1$ седла слегка сдвигаются в $\sin(x)=\pm \varepsilon$, $\sin(y)=\mp \varepsilon$ (знаки определяются, м.б. с точностью до наоборот знаком $\cos(x)\cos(y)$). "Чернопольные" центры превращаются в фокусы (стабильные и нестабильные, в зависимости от знака $\sin(x)\sin(y)$), а вот "белопольные", как показывает симуляция $\varepsilon=.1$, остаются центрами.

И если все остальные точки исследуются по линеаризации, то как обосновать, что эти центры так и упорствуют в своей центральности.


У вас нет доступа для просмотра вложений в этом сообщении.

 
 
 
 Re: Странная динамическая система на плоскости: упорные центры
Сообщение03.04.2018, 11:36 
Аватара пользователя
Red_Herring в сообщении #1301380 писал(а):
как обосновать, что эти центры так и упорствуют в своей центральности.

Топологически? :-)

 
 
 
 Re: Странная динамическая система на плоскости: упорные центры
Сообщение03.04.2018, 12:33 
Аватара пользователя
Geen в сообщении #1301383 писал(а):
Топологически?

Да хоть как нибудь.

 
 
 
 Re: Странная динамическая система на плоскости: упорные центры
Сообщение03.04.2018, 14:01 
Red_Herring в сообщении #1301380 писал(а):
"Чернопольные" центры превращаются в фокусы

Вроде, линеаризованно они все центры, но за счет нелинейностей некоторые становятся фокусами. Какая-то вырожденная глобальная бифуркация.

 
 
 
 Re: Странная динамическая система на плоскости: упорные центры
Сообщение03.04.2018, 14:39 
Аватара пользователя
dsge в сообщении #1301416 писал(а):
Вроде, линеаризованно они все центры, но за счет нелинейностей некоторые становятся фокусами. Какая-то вырожденная глобальная бифуркация.
Отнюдь нет. С.з. будут в фокусах ${\color{red}\pm} \varepsilon \pm i$, а в центрах $\pm i\sqrt{1-\varepsilon^2}$ и при $\varepsilon$ возрастающем упорные центры скукоживаются и сливаются с седлами при $\varepsilon=1$


У вас нет доступа для просмотра вложений в этом сообщении.

 
 
 
 Re: Странная динамическая система на плоскости: упорные центры
Сообщение03.04.2018, 16:28 
Аватара пользователя
Так а во что они, в принципе, могут превратиться?
Вот есть 4 центра и седло между ними - что может произойти в общем случае при "малом шевелении системы"?

 
 
 
 Re: Странная динамическая система на плоскости: упорные центры
Сообщение03.04.2018, 16:47 
Аватара пользователя
Geen в сообщении #1301439 писал(а):
Вот есть 4 центра и седло между ними - что может произойти в общем случае при "малом шевелении системы"?

Посмотрим, что будет при возмущении $(\varepsilon x,\varepsilon y)$. Тут правда, все фокусы неустойчивые.

Ну а всяких фокусов внутри предельных циклов тоже никто не отменял


У вас нет доступа для просмотра вложений в этом сообщении.

 
 
 
 Re: Странная динамическая система на плоскости: упорные центры
Сообщение03.04.2018, 18:13 
Аватара пользователя
Red_Herring в сообщении #1301446 писал(а):
Тут правда, все фокусы неустойчивые.

В Вашем случае (периодическом) такое невозможно (как кажется) - половина фокусов должны быть устойчивые.

Red_Herring в сообщении #1301446 писал(а):
Ну а всяких фокусов внутри предельных циклов тоже никто не отменял

Но "снаружи" такой цикл должен выглядеть как фокус?

И у Вас пара устойчивый-неустойчивый фокус образовались по диагонали (по отношению к седлу) - не представляю как могли бы быть фокусы по другой диагонали.

 
 
 
 Re: Странная динамическая система на плоскости: упорные центры
Сообщение03.04.2018, 18:48 
Аватара пользователя
я бы попробовал несколько членов нормальной формы векторного поля выписать в окрестности положения равновесия, вдруг там до третьего-четвертого порядка центр, а потом что-то другое

 
 
 
 Re: Странная динамическая система на плоскости: упорные центры
Сообщение03.04.2018, 19:46 
Аватара пользователя
Geen в сообщении #1301467 писал(а):
не представляю как могли бы быть фокусы по другой диагонали.

Я тоже. Но это, увы не доказательство
pogulyat_vyshel в сообщении #1301475 писал(а):
я бы попробовал несколько членов нормальной формы векторного поля выписать в окрестности положения равновесия, вдруг там до третьего-четвертого порядка центр, а потом что-то другое

Эта задача возникла просто из случайной демонстрации для студентов-нематематиков. Поэтому мой интерес к ней ограничен. Но я рассчитывал(ваю) на то, что кто-нибудь знает или заинтересуется. Но я бы начал бы не с анализа, а просто нашел бы программу которая это бы просчитала с большой точностью (я пользовался Java апплетом)

 
 
 
 Re: Странная динамическая система на плоскости: упорные центры
Сообщение03.10.2018, 12:49 
Red_Herring
Внимательное поглядение на первую картинку говорит: циклы красиво симметричны, и наличиствует явная симметрия относительно прямой $x+y = 2\pi$ (и прямой $\Gamma: x+y=0$).
Но это - хорошо! Рассмотрим симметрию $I$ относительно (второй) прямой:
$I(x,y)=(-y,-x)$. Видим: чудесным образом эта инволюция переводит наше поле $v$ в
$-v$. Это значит, что наша система - обратимая (reversible), и ее особые точки типа "центр по линейной части", лежащие на зеркале $\Gamma $ инволюции $I$, являются настоящими центрами ( если дуга $\gamma_{a,b}$ есть кусок фазовой кривой с концами $a,b$ на $\Gamma$, так что отображение $\Delta_{\frac{P}{2}}$ ($P$ - это Пуанкаре :D )переводит $a$ в $b$, то $\tilde{\gamma}_{a,b}= I(\gamma_{a,b})$ - тоже кусок фазовой кривой, но с неправильным направлением движения. Тогда $\Delta_{\frac{P}{2}}(b)=a$, так что полученные две дуги - цикл, и $\Delta_{P}(a)=a$. Значит---центр это.)

 
 
 
 Re: Странная динамическая система на плоскости: упорные центры
Сообщение03.10.2018, 13:35 
Аватара пользователя
DeBill
Здорово! Но все таки жаль, что так просто

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group