2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 ПИ-регулятор на нечетком объекте
Сообщение12.04.2017, 22:05 
Аватара пользователя
Коллеги, объект биологический, переходные характеристики не замерить из гуманных соображений, но скорей всего при внешнем воздействии внутреннее состояние меняется экспоненциально с некоторой постоянной времени. Есть опыт управления чисто пропорциональным регулятором, по отзывам работает и с чисто интегральным регулятором. В том и другом случае коэф. ОС подбирается из знания объекта, уровня помех и опыта.
Там и там выявляются недостатки, возможны срывы регулирования. Исходя из общих соображений, ПИ-регулятор должен работать лучше. Разработанные для технических систем правила настройки регулятора вряд ли применимы. Можно ли воспользоваться эмпирическим правилом - по наблюдению за объектом в течение длительного времени и достаточно случайном выборе коэф. ОС подкорректировать их таким образом, чтобы в среднем суммарное воздействие от пропорционального звена уравнялось с воздействием от интегрального звена? В противном случае пришлось бы считать регулятор преимущественно пропорциональным или интегральным.
Обоснования не могу привести, разве что Лапласа принцип недостаточного обоснования.

 
 
 
 Re: ПИ-регулятор на нечетком объекте
Сообщение13.04.2017, 02:45 
Korvin в сообщении #1209101 писал(а):
Можно ли воспользоваться эмпирическим правилом - по наблюдению за объектом в течение длительного времени и достаточно случайном выборе коэф. ОС подкорректировать их таким образом, чтобы в среднем суммарное воздействие от пропорционального звена уравнялось с воздействием от интегрального звена?
Нет, не думаю. Нельзя сравнивать несравнимое. Если неформально, то назначение интегрального звена - полностью устранить постоянную погрешность, а пропорционального - отрабатывать быстрые колебания вокруг среднего.

Обратите внимание, что параллельно включённые интегральное и пропорциональное звенья в ПИ регуляторе образуют нуль первого порядка. Постарайтесь скомпенсировать этим нулём полюс вашего объекта, уравняв их постоянные времени. Это не гарантирует оптимальность вашего регулятора в каком бы то ни было смысле, но в результате вы получите для вашего объекта с регулятором в незамкнутом контуре простую и интуитивно понятную характеристику интегратора, вокруг которого замыкается пропорциональная обратная связь с каким-то коэффициентом усиления (вторая степень свободы вашего ПИ регулятора). Правда, это всё верно только в линейном режиме.

 
 
 
 Re: ПИ-регулятор на нечетком объекте
Сообщение13.04.2017, 04:54 
Чем больше воздействие, тем больнее? :-) Или там не такая зависимость?

 
 
 
 Re: ПИ-регулятор на нечетком объекте
Сообщение13.04.2017, 22:15 
Аватара пользователя
Mihaylo в сообщении #1209122 писал(а):
Чем больше воздействие, тем больнее? :-) Или там не такая зависимость?

Да примерно так. Нельзя же снять переходную характеристику человека - не кормить 2 месяца а потом кормить 2 армейскими пайками десантника и измерять сахар в крови или гормон какой. Просто от самого воздействия объект управления настолько меняется (вплоть до разрушения), что полученные характеристики теряют смысл. Осторожненько в пределах допустимых отклонений можно.

 
 
 
 Re: ПИ-регулятор на нечетком объекте
Сообщение14.04.2017, 03:03 
Korvin в сообщении #1209292 писал(а):
Осторожненько в пределах допустимых отклонений можно.

Добавьте к ПИ-регулятору сатуратор с допустимыми ограничениями.
Что значит "осторожненько"? Ограничение второй производной (скорости изменения) воздействия? Добавьте подчиненный регулятор второй производной, настройте ограничения.

 
 
 
 Re: ПИ-регулятор на нечетком объекте
Сообщение14.04.2017, 08:50 
Аватара пользователя
Mihaylo в сообщении #1209322 писал(а):
Korvin в сообщении #1209292 писал(а):
Осторожненько в пределах допустимых отклонений можно.

Добавьте к ПИ-регулятору сатуратор с допустимыми ограничениями.
Что значит "осторожненько"? Ограничение второй производной (скорости изменения) воздействия? Добавьте подчиненный регулятор второй производной, настройте ограничения.

А так и есть, это уже опыт подсказал. Поскольку данные зашумлены, возможны выбросы в значениях физиологически совершенно невозможные, данные корректируются всего на 50% (система дискретная по времени, квант времени неделя), с расчетом что недокоррекция докорректируется в следующую неделю, а если было выпадающее значение, то и нужда в докоррекции отпадет. Именно вследствие вот этих феноменов с дерганием по пропорциональному регулированию и решено было поэкспериментировать с интегральной компонентой коррекции. Вопрос в соотношении.
А ограничение есть. В середине интервала линейное изменение, затем насыщение, и в + и -. Можно сделать функцию поизящнее вроде арктангенсоиды, где тоже насыщение, но только на бесконечности. Принципиально мало что изменится имхо.

-- 14.04.2017, 10:00 --

realeugene в сообщении #1209118 писал(а):
Korvin в сообщении #1209101 писал(а):
Можно ли воспользоваться эмпирическим правилом - по наблюдению за объектом в течение длительного времени и достаточно случайном выборе коэф. ОС подкорректировать их таким образом, чтобы в среднем суммарное воздействие от пропорционального звена уравнялось с воздействием от интегрального звена?
Нет, не думаю. Нельзя сравнивать несравнимое.

Спасибо за пояснения. Относительно сравнивания несравнимого хотел бы пояснить, может есть какое оправдание. Понятно что нельзя сравнивать производную с функцией или функцию с интегралом, разные размерности, это что скорость с расстоянием. Но система дискретная, и, если цель поддерживать исходное состояние, то через квант времени при первой коррекции численно скорость умноженная на квант будет равна отклонению от цели, и размерности совпадут. Тогда логично первая коррекция по 2 сигналам ошибки (по функции и интегралу) складывается из 2 равных значений. Потом пойдет разнобой, и по значениям и по знакам, вот мысль и мелькнула, не уравнять ли этот разнобой на длительном отрезке времени по 20-30 фактам коррекции путем подбора коэф. ОС. Пока все работает, вскорости постараюсь проанализировать.

 
 
 
 Re: ПИ-регулятор на нечетком объекте
Сообщение14.04.2017, 12:22 
Korvin в сообщении #1209337 писал(а):
Принципиально мало что изменится имхо.
Для интегратора вид ограничения принципиален.

Korvin в сообщении #1209337 писал(а):
Но система дискретная
Без разницы.

 
 
 
 Re: ПИ-регулятор на нечетком объекте
Сообщение24.04.2017, 05:01 
Аватара пользователя
Какие-то промежуточные результаты. По 10 фактам дискретного регулирования с интервалом в неделю и выставленным по прошлому опыту коэф. ОС по пропорциональной и интегральной компонентам медианное абсолютное отклонение MAD составило 150 ед. по пропорциональной составляющей ошибки (разница между фактом и заданием) и 200 ед. по интегральной. Т.е. исходя из малой выборки делается вывод, что коэф. ОС и ограничения примерно угаданы (или подобраны). С расширением выборки можно уточнить вывод, и если тенденция преобладания интегральной составляющей сохранится, то коэф. ОС по интегральной составляющей придется увеличить.
Стандартное отклонение соответственно 317 и 447 единиц, т.е. соотношение то-же, что и для MAD.
Заблуждаюсь ли я в выводах? Буду очень благодарен.

 
 
 
 Re: ПИ-регулятор на нечетком объекте
Сообщение26.04.2017, 03:53 
Аватара пользователя
realeugene в сообщении #1209118 писал(а):
Обратите внимание, что параллельно включённые интегральное и пропорциональное звенья в ПИ регуляторе образуют нуль первого порядка. Постарайтесь скомпенсировать этим нулём полюс вашего объекта, уравняв их постоянные времени.

Постоянная времени объекта равна 30 дням, время полуустановления соответственно 21 день, или 3 недели. Правильно ли я понял, что следует уравнять с этим значение постоянные времени цепей ОС? При дискретном регулировании с квантом времени 1 неделя значит ли это, что мне следует подавать по цепям ОС и пропорциональной, и интегральной часть сигнала ошибки (порядка 17% за неделю), что внесет необходимую задержку в регулирование и эмулирует интегрозвено с необходимой постоянной времени? Я в данное время подаю по цепям ОС 50% сигнала ошибки (в линейной области, есть и ограничение), но 50% исходя из того, что сигнал зашумлен, а не для создания задержки.

 
 
 
 Re: ПИ-регулятор на нечетком объекте
Сообщение04.07.2017, 13:45 
Аватара пользователя
Получены еще 10 значений по ПИ-регулированию на нечетком объекте. В пост выше вкралась опечатка на стадии оформления, которая не сказалась на выводе, который был сделан раньше оформления.
При выбранных достаточно наугад по прошлому опыту коэффициентах ОС по интегральной и пропорциональной ошибке сигма составляла 317 и 447 единиц соответственно, MAD 150 и 200. Коэф. ОС по инт. ошибке увеличен в 1,5 раза, по проп. оставлен неизменным. Резко увеличились обе ошибки в ходе процесса регулирования - сигма проп. 510, сигма интегр. 593, MAD проп. 250, интегр. 350.
Впереди еще серия из 10 фактов, коэф. ОС по инт. ошибке будет уменьшен в 2 раза в сравнении с первоначальным вариантом, по проп. остается по-прежнему неизменным. Таким образом, скоро буду иметь результаты для 3 вариантов с 3 значениями ОС количественно 1-1,5-0,5 по инт. ошибке при неизменности ОС по проп. ошибке. Возможно, удастся установить закономерность и подобрать оптимум. Конечная цель - при каких параметрах ОС интегральная ошибка минимальна (пропорциональная имеет вспомогательный характер).
Еще лучше было бы иметь еще 6 серий с изменениями ОС по проп. ошибке, полностью покрыть матрицу 3 х 3 и попытаться аппроксимировать зависимости количественно. Приемлемо ли подобное, учитывая что объект регулирования - человек со своими физиологическими характеристиками, и обычные методы (подать дельта-функцию или прямоугольный сигнал и посмотреть отклик и пр.) неприемлемы ввиду нелинейности объекта и/или негуманности эксперимента?

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group