2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 00:31 
Да, конечно, я про исходный, а не про слой.

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 00:37 
gris
В англовики первая картинка в разделе "Related polyhedra", да и определению, вроде, соответствует. Про авторитетность википедии все ясно, и если есть на тему антипризм известные работы, желательно русскоязычные, было бы интересно с ними ознакомиться.

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 01:00 
Аватара пользователя
Вы о чём? Octahedron aka октаэдр, естественно, антипризма. Его параллельные основания это правильные треугольники, как и боковые грани (в антипризменном понимании). Ваш "слой" это два прямоугольника в качестве параллельных оснований, причём, каждая сторона нижнего прямоугольника параллельна двум сторонам верхнего. Боковые грани — трапеции. Антипризмой тут и не пахнет.

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 01:06 
gris
Я повторюсь, что сейчас обсуждаю не слой, а ваш ответ на комментарий arseniiv, то есть тетраэдр, грани которого -- равнобедренные треугольники.

Та картинка на англовики, про которую я выше написал, называется "Diagonal antiprism". И я уже пишу больше про русскоязычную литературу, связанную с антипризмами, которую не нашел, а не про двуугольную антипризму.

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 01:21 
Аватара пользователя
Наверное, я недостаточно изучил вопрос, да, собственно, это лишь мои домыслы. Про правильный тетраэдр я согласен, что его можно назвать антипризмой. Основания — два равных отрезка.

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 09:36 
Предлагаю вариант: Усеченная треугольная призма.

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 09:58 
Аватара пользователя
Вообще это (говорю про слой!) больше похоже на усечённую четырёхугольную пирамиду с прямоугольным основанием. Если бы не боковые рёбра. Прямоугольный призматоид с трапециальными боковыми гранями куда ближе, но слой — подмножество этого понятия.

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 09:59 
Аватара пользователя

(Оффтоп)

конусообразная трапецепризма :-)
http://http://www.nachert.ru/course/?lesson=12&id=95
или трёхмерная трапеция

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 10:41 
arseniiv
gris
Да, равенство скрещивающихся перпендикулярных ребер обязательно. Если они не равны, то не подходит. "Клиновидный" тетраэдр вроде неплох, потому что похоже на два клина, конечно. Но ответ на исходный вопрос был получен, если, конечно, кто-то не предложит более изящный способ получения рассматриваемого многогранника, не из тетраэдра.

(Оффтоп)

Или не придет какой-нибудь строитель и не скажет, что это обычный... :D

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 11:14 
Аватара пользователя
Я как плотник могу предложить такое. Берём деревянный брус в форме параллелепипеда. Стёсываем две противоположные боковухи под одинаковыми углами к одному из оснований. Потом стесываем другие две боковухи под одинаковыми (но, возможно, другими) углами к другому основанию.

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 19:40 
grizzly
По результатам обсуждения я все-таки хочу поинтересоваться: не кажется ли вам, что "призматоидный" будет лишним? Ведь многогранник, ограниченный частью тетраэдра и параллельными плоскостями и так будет призматоидом, тут важно лишь, что в сечении -- прямоугольник, что будет понятно после введения определения "слоя".

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 22:43 
Аватара пользователя
Derise в сообщении #1192424 писал(а):
По результатам обсуждения я все-таки хочу поинтересоваться: не кажется ли вам, что "призматоидный" будет лишним? Ведь многогранник, ограниченный частью тетраэдра и параллельными плоскостями и так будет призматоидом, тут важно лишь, что в сечении -- прямоугольник, что будет понятно после введения определения "слоя".
Здесь есть проблемка. Первое, что придёт в голову любому человеку при упоминании "слоёв тетраэдра" -- это, очевидно, нарезанный ломтиками тетраэдр (каждый отдельный слой -- усечённая пирамида). Ведь это тоже "многогранник, ограниченный частью тетраэдра и параллельными плоскостями". Поэтому хочется каким-то образом обозначить в названии специфическое расположение секущих плоскостей.

-- 13.02.2017, 22:52 --

Derise в сообщении #1192424 писал(а):
тут важно лишь, что в сечении -- прямоугольник, что будет понятно после введения определения "слоя"
А, ну да, сли это удастся -- тогда конечно.

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 22:57 
grizzly в сообщении #1192494 писал(а):
Первое, что придёт в голову любому человеку при упоминании "слоёв тетраэдра" -- это, очевидно, нарезанный ломтиками тетраэдр (каждый отдельный слой -- усечённая пирамида). Ведь это тоже "многогранник, ограниченный частью тетраэдра и параллельными плоскостями".

Так ведь и усеченная пирамида -- призматоид. В чем преимущество (пусть пока в определении слоя я не смог передать вид сечения)?

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение13.02.2017, 23:11 
Аватара пользователя
Derise в сообщении #1192501 писал(а):
В чем преимущество?
Вы правы, я сбился с пути. Тогда действительно ни к чему. А что если назвать "прямоугольный слой", а все поясняющие детали уточнить в определении? Звучит вполне естественно, нет?

 
 
 
 Re: Поперечное сечение тетраэдра.
Сообщение14.02.2017, 06:51 
Всматриваясь в Ваш рисунок, я вижу два горизонтально лежащих тела, боковые ребра которых параллельны друг другу. Под громкое название "треугольная призма" эти тела не дотягивают тем, что основания (треугольники) не параллельны, т.е. от призмы непараллельно основанию отпилили некоторую часть. Т.к. слово "отпилить" уже занято в самом слове "призма" (др.греческое: "нечто отпиленное"), то можно использовать другое: "отсекли". Таким образом, получается словосочетание: "усеченная треугольная призма". :-)

 
 
 [ Сообщений: 32 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group