2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Метатеорема Ферма и доказательство ВТФ для n=2
Сообщение25.12.2016, 04:00 
Метатеорема Ферма. Для любого натурального числа $k$ (включая $k=0$, $k=1$ и $k=2$) рано или поздно найдётся ферматист, который возьмётся искать доказательство теоремы Ферма для случая $n=k$.

Я сделал это удивительное открытие, но максимальный размер сообщения, которое можно опубликовать на данном форуме, слишком мал, чтобы я мог разместить в нём полное доказательство, поэтому я ограничусь случаем $k=0$. Итак, требуется доказать, что найдётся человек, который возьмётся доказывать утверждение $$ x \ne 0, y \ne 0, z \ne 0 \quad \Rightarrow \quad x^0 + y^0 \ne z^0 $$ для всех целых чисел $x,y,z$. Этим человеком буду я. Вот моё доказательство: если для целых чисел $x,y,z$ выполняются все три условия $x \ne 0, y \ne 0, z \ne 0$, то $x^0 + y^0 = 1 + 1 = 2$, в то время как $z^0 = 1$ - следовательно, выполнение уравнения $x^n + y^n = z^n$ в случае $n=0$ невозможно ни при каких отличных от нуля значениях $x,y,z$. В случае $k=0$ выдвинутая мной гипотеза доказана полностью.

Перейдём к случаю $k=2$. Найти ферматиста, который возьмётся доказывать теорему Ферма для случая $n=2$, нелегко. Однако, рассмотрим уравнение $$x^2 + y^2 = z^2$$ и предположим, что оно имеет нетривиальные решения. Возможны два случая.

1-й случай: число $z$ чётно. Если оба числа $x,y$ также являются чётными, то, произведя замену $x'=\frac{x}{2},y'=\frac{y}{2},z'=\frac{z}{2}$, приходим к уравнению $x'^2 + y'^2 = z'^2$, которое имеет тот же вид, что и исходное уравнение, но теперь $|z'| < |z|$. Поэтому далее будем считать, что оба значения $x,y$ нечётны. Следовательно, для некоторых целых чисел $k,l$ выполняются соотношения $x=2k+1,y=2l+1$. Подставим полученные выражения для $x$ и $y$ в исходное уравнение, и после несложных преобразований найдём $$ 4 k^2 + 4 l^2 + 4 k + 4 l + 2 = z^2.$$ Но это невозможно, поскольку левая часть данного равенства при делении на $4$ даёт остаток $2$, а правая часть даёт либо остаток $0$, если число $z$ чётно, либо остаток $1$, если число $z$ нечётно. Полученное противоречие показывает, что 1-й случай невозможен.

2-й случай: число $z$ нечётно. Когда Леонард Эйлер искал доказательство ВТФ для $n=3$, он делал замену $$x=t+u, \quad y=t-u$. Попробуем поступить так же. После подстановки в исходное уравнение получим $$ (t+u)^2 + (t-u)^2 = z^2. $$ После раскрытия скобок имеем $$2t^2 + 2u^2 = z^2.$$ Но $z^2$ - нечётное число, а $(2t^2 + 2u^2)$ чётно при любых $t,u$. То есть предположение, что $z$ нечётно, приводит нас к уравнению, которое не может быть решено в целых числах относительно переменных $t,u$.

Следовательно, могут существовать ферматисты, которые для $n=2$ будут пытаться опровергнуть теорему Ферма...

 
 
 
 Re: Метатеорема Ферма и доказательство ВТФ для n=2
Сообщение25.12.2016, 06:31 
Аватара пользователя
Gavrisych в сообщении #1179767 писал(а):
2-й случай: число $z$ нечётно. Когда Леонард Эйлер искал доказательство ВТФ для $n=3$, он делал замену $$x=t+u, \quad y=t-u$

При такой замене $x$ и $y$ одной чётности, следовательно $z$ чётно.

-- Вс дек 25, 2016 09:35:54 --

Gavrisych в сообщении #1179767 писал(а):
Для любого натурального числа $k$

А если $k$ будет такое, что его не выговоришь за 100 лет?

 
 
 
 Re: Метатеорема Ферма и доказательство ВТФ для n=2
Сообщение25.12.2016, 09:01 
Аватара пользователя
Gavrisych в сообщении #1179767 писал(а):
он делал замену $$x=t+u, \quad y=t-u$

А Вы уверены, что $t$ и $u$ получатся целыми? - ведь только тогда Вы сможете сделать вывод, что
Gavrisych в сообщении #1179767 писал(а):
$(2t^2 + 2u^2)$ чётно при любых $t,u$

Ну, проведите эти свои рассуждения для известного примера $x=3$, $y=4$, $z=5$ (для них как раз $x^2+y^2=z^2$ и $z$ нечётное) - и увидите, в чём ошибка.

 
 
 
 Re: Метатеорема Ферма и доказательство ВТФ для n=2
Сообщение25.12.2016, 16:06 
Аватара пользователя

(Оффтоп)

Ну это же явный юмор.

 
 
 
 Re: Метатеорема Ферма и доказательство ВТФ для n=2
Сообщение25.12.2016, 17:35 
Аватара пользователя
Для случая $n = 2$ метатеорема доказывается предъявлением Yarkin (для $n = 1$ и $2$ наверное тоже, он кажется писал что уравнения в целых числах не решаются вообще).

 
 
 
 Re: Метатеорема Ферма и доказательство ВТФ для n=2
Сообщение26.12.2016, 10:24 
Аватара пользователя

(Оффтоп)

Someone в сообщении #1179859 писал(а):
Ну это же явный юмор

Я так и понял и даже хотел поддержать ... На самом деле моё возражение
bot в сообщении #1179774 писал(а):
При такой замене $x$ и $y$ одной чётности, следовательно $z$ чётно.

по замыслу должно было стать было базой индукции при доказательстве другой метатеоремы, но несоответствие содержания с разделом заставило меня воздержаться от её формулировки.

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group