Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия, Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Позволять многочлены where for all we have: Докажи это где симметрический полином
Lia
Re: Многочлен
21.07.2016, 19:02
Последний раз редактировалось Lia 21.07.2016, 19:29, всего редактировалось 1 раз.
Navid Please, provide an English version of your post.
Navid
Re: Многочлен
21.07.2016, 19:51
Let be a polynomial in three variables, such that : Prove that there exist a Symmetric Polynomial such that: .
DeBill
Re: Многочлен
22.07.2016, 12:31
Последний раз редактировалось DeBill 22.07.2016, 12:47, всего редактировалось 1 раз.
Navid The assertion is wrong. Let . Using the functional equation 6 times we get , so . Hence for some polynomial . Then for all . (1) Let . By the same way we get , so does not depend on , . We have from (1): (2). Using (2) we obtained and So, is "almost symmetric" and "almost even".... Substituting we get Example: .
Navid
Re: Многочлен
22.07.2016, 13:13
Последний раз редактировалось Navid 22.07.2016, 13:13, всего редактировалось 1 раз.
Navid The assertion is wrong. Let . Using the functional equation 6 times we get , so . Hence for some polynomial . Then for all . (1) Let . By the same way we get , so does not depend on , . We have from (1): (2). Using (2) we obtained and So, is "almost symmetric" and "almost even".... Substituting we get Example: .
Thank you very much!, I think we must change the Condition of The Statement for polynomial , By this manner: where - arbitrary polynomial, unchanged under cyclic permutations of variables.
DeBill
Re: Многочлен
22.07.2016, 16:23
Navid and "almost even"...That is, with all monomials of even degree.