Невозможно представить точно или невозможно представить вообще - нельзя находить независимые нормальные с.в., распределение суммы которых приближается к распределению равномерной с.в.?
Если так, то значит вот так нельзя делать:
вычет нормальной с.в. из случайной величины, которая является суммой этой нормальной с.в. и равномерной с.в., не равен равномерной с.в.?
А независимость тут точно есть?
Вообще же придумать зависимые величины такие, чтобы их сумма приближалась бы к равномерной, возможно и удастся. Но зависимость будет, если получится, нелинейной и сильно хитровывернутой. Для линейно зависимых нормально распределённых случайных величин действует то же самое - получить ненулевые семиинварианты, складывая нули с нулями, не получится.
А вот, скажем, изобрести такие величины, чтобы каждая по отдельности имела бы нормальное распределение, а их сумма обладала бы свойствами, которые есть у равномерного, но не у нормального, ну, скажем, сосредоточенностью на отрезке - просто.
Одна стандартная нормальная величина, а вторая равна ей, если первая по абсолютной величине не превышает единицы, в противном случае противоположна. И тогда их сумма лежит между -1 и 1. Правда, это ещё не равномерная, "горбик", а в точке 0 "пупырышек". Но, наверно, можно и равномерную сделать. Только понадобится нетривиальная зависимость.