К синтаксической математике относят не мат.анализ сам по себе, а способ его преподавания, где от студентов требуется бесконечное вычисление производных и интегралов по известным формулам или с помощью известных приёмов, вместе с дефицитом задач на доказательство.
К сожалению, обычно подобные высказывания, если и начинаются с обсуждения способов преподавания, очень быстро обобщаются на математику в целом. Например, подобное обобщение уже появилось в первом сообщении этой темы.
Причём к этому способу преподавания презрительное отношение не потому, что это "прикладная ерунда", а наоборот - потому что это нигде и никому не нужно. И в научной работе по математике, и в приложениях математики, как правило, оказываются ненужными навыки взятия сложных интегралов в элементарных функциях. В частности, в научных исследованиях приходится брать явно только самые простейшие интегралы, а в приложениях интегралы не берут, а вычисляют численно.
Это красивая, но легенда. Хорошая аналитическая теория - это очень удобно, намного удобнее, чем численная модель. Поэтому, если задачу удается "пробить" аналитикой, это будут делать.
А то ведь есть школьники и даже студенты, которые умеют брать производные и интегралы, при этом напрочь не понимая, что такое производная и интеграл; которые научились решать типовые задачи, напрочь не понимая, что именно они делают.
Есть, безусловно. Но из этого никак не следует вывод, что уметь решать типовые задачи не надо.
Тот же Павлов говорит, что одному и тому же предмету можно обучать синтаксически, а можно содержательно - и надо обучать содержательно. Точную ссылку на эти его слова приводить не буду, читал их очень давно. Но это доказывает, что он всё-таки далёк от чёткого разделения всех предметов на синтаксические и содержательные; скорее, разделение это относится не к самим предметам, а к способу их преподавания.
Я, наверное, слышал это все в куда большем объеме (по причине куда большей близости к источнику).
В общем-то он даже предлагал примерную схему обучения, которая ему казалось правильной; можно отметить, что она нереалистична даже для значительной части студентов-математиков (в т.ч. и довольно сильных), и совершенно непригодна для кого-либо еще.