2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Первообразная рациональной функции
Сообщение12.04.2016, 19:21 
Зорич(1997) параграф 7 (Первообразная) пример 13.
Нужно вычислить первообразную функции:

$\frac{2x^2+5x+5}{(x-1)(x+1)(x+2)}=\frac{A}{x-1}+\frac{B}{x+1}+\frac{C}{x+2}$

Цитата: "Заметим, что в данном случае эти числа можно было бы найти и в уме. Действительно, домножая на $x-1$ и полагая затем в полученном равенстве $x=1$, справа получим $A$, а слева - значение при $x=1$ дроби, полученной из нашей вычёркиванием в знаменателе сомножителя $x-1$, т.е. $A=\frac{2+5+5}{2 \cdot 3}=2$."

Непонятно следующее - почему позволительно подставлять $x=1$ после домножения на $x-1$, ведь $x=1$ не лежит в области определения?

 
 
 
 Re: Первообразная рациональной функции
Сообщение12.04.2016, 19:35 
Аватара пользователя

(Оффтоп)

Guliashik в сообщении #1114457 писал(а):
Цитата: "<...> Действительно, домнажая на $x-1$ и <...>"
Это точно цитата? Не верю, что Зорич мог сделать ошибку в слове «домножая» :mrgreen:

 
 
 
 Re: Первообразная рациональной функции
Сообщение12.04.2016, 19:45 
Aritaborian, спасибо, моя ошибка, конечно.

 
 
 
 Re: Первообразная рациональной функции
Сообщение12.04.2016, 19:50 
Аватара пользователя
Guliashik в сообщении #1114457 писал(а):
почему позволительно подставлять $x=1$ после домножения на $x-1$,

По непрерывности. Имеем равенство $\frac{f(x)}{x-1}=\frac{g(x)}{x-1}$, где функции $f$ и $g$ непрерывны в точке 1. При $x\ne 1$ имеем $f(x) = g(x)$. Но в силу непрерывности это равенство сохраняется и при $x=1$.

-- 12.04.2016, 19:52 --

Заметьте, что в равенстве $\frac{ax+b}{(x-1)^2} = \frac{A}{x-1}+\frac{B}{(x-1)^2}$ описанным способом ("методом закрывания") можно найти только коэффициент $B$.

 
 
 
 Re: Первообразная рациональной функции
Сообщение13.04.2016, 07:27 
provincialka, спасибо, разобрался.

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group