2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 00:41 
Вообще говоря, скажу скромно, я копнул такой ОГРОООМНЫЙ пласт. Ну, имхо, конечно. Поэтому я сам еще не знаю ответы на все вопросы.

 
 
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 00:44 
Не, ну на мой маленький ответьте, а. На все тут не надо.

 
 
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 00:53 
Lia в сообщении #1112562 писал(а):
Не, ну на мой маленький ответьте, а. На все тут не надо.

Я должен угадать? )) Я не очень понимаю, что Вы спрашиваете? Странно как то звучит: Что значит, что функция начинается в точке $(0;0)$. Ну, она там начинается... Или уточните...

 
 
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 00:55 
Определение хочу.

 
 
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 01:05 
А! Их есть у меня: $1$ является сложным числом (в том смысле, что собственный квадрат), поэтому $F(1) = 0$. Притом, если учесть, что "под" $1$ располагается $0$, то это вообще самое сложное число. Например, $3$ может быть разложено на возможный множитель $1$, а на что может быть разложена сама $1$? Такое разложение даст бесконечность.

 
 
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 01:07 
Аватара пользователя
И при чем же тут все дальнейшие наслоения с $\pi(x)$?
Единица не считается ни простым числом,ни составным. Всё.

 
 
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 01:13 
provincialka в сообщении #1112568 писал(а):
И при чем же тут все дальнейшие наслоения с $\pi(x)$?
Единица не считается ни простым числом,ни составным. Всё.

Кто это так единицу считает? Крайне неразумно.

 
 
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 01:15 
Аватара пользователя
Sim1 в сообщении #1112572 писал(а):
Кто это так единицу считает? Крайне неразумно.

Математики так считают. Если вас это не устраивает -- можете аргументировать. Но все-таки не с помощью всяких дополнительно построенных функций..

 
 
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 01:16 
Не, а в этом что-то есть...
Рассуждения из стартового поста можно, видимо, сформулировать так.
1. если через решето Эратосфена просеять все натуральные, то останутся токо простые.
2. если процесс просеивания прекратить на каком-то шаге (не вычеркивать числа, кратные простым, большим данного), то останется нечто. Это нечто, начиная с некоторого места, будет периодическим. Это нечто, до некоторого места, будет состоять только из простых. К сожалению, эти два куска не перекрываются. Однако, у этого нечто, можно выделить начальный кусок, на котором все будет совсем плохо (не будет еще периодичности, но уже не все числа будут простыми). Если теперь,(забив на отсутствие периодичности), сосчитать количество чисел нашего нечто таки по комбинаторным формулам (предполагающим периодичность), получим, в соответствии с эмпирическими данными ТС, что доля простых близка доле чисел нашего нечто (в котором есть и непростые) на соответствующем отрезке. Т.е. , две ошибки чудесным образом компенсировались. И это - интересное наблюдение.
3. Доказательно-объяснительная часть, состоящая в "очевидно" , "легко" и "можно", не вдохновляет
4. Однако у меня остается твердое убеждение впечатление, что на основе таких рассуждений, дополнив их индукцией (и,конечно возможно, используя известную формулу для распределения простых чисел) можно получить формулу для распределения простых чисел

 
 
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 01:20 
Аватара пользователя
DeBill
Я согласна, что автор чего-то увидел в алгоритме Решета. Правда, вчитываться не особо хотелось. Но вот "главность" результата про $(0,0)$... как-то напрягает.

 
 
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 01:24 
provincialka в сообщении #1112574 писал(а):
Математики так считают. Если вас это не устраивает -- можете аргументировать. Но все-таки не с помощью всяких дополнительно построенных функций..

Вы мне сейчас напомнили каких то древних физиков. Вижу и говорю. Что вообще можно сказать о числах, если не применять к ним функций?
И это... Дался Вам этот (0;0) :-). Я ж писал, это для меня главный результат, так то может он и не главный.

-- 06.04.2016, 01:31 --

DeBill в сообщении #1112575 писал(а):
4. Однако у меня остается твердое убеждение впечатление, что на основе таких рассуждений, дополнив их индукцией (и,конечно возможно, используя известную формулу для распределения простых чисел) можно получить формулу для распределения простых чисел

Да, да )). Буду стараться, вашевысокоблагородие!

 
 
 
 Posted automatically
Сообщение06.04.2016, 02:06 
 i  Тема перемещена из форума «Дискуссионные темы (М)» в форум «Пургаторий (М)»
Причина переноса: пожалуй, достаточно.

 
 
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 07:31 
DeBill в сообщении #1112575 писал(а):
Не, а в этом что-то есть...
Рассуждения из стартового поста можно, видимо, сформулировать так.
1. если через решето Эратосфена просеять все натуральные, то останутся токо простые.
2. если процесс просеивания прекратить на каком-то шаге (не вычеркивать числа, кратные простым, большим данного), то останется нечто. Это нечто, начиная с некоторого места, будет периодическим. Это нечто, до некоторого места, будет состоять только из простых. К сожалению, эти два куска не перекрываются. Однако, у этого нечто, можно выделить начальный кусок, на котором все будет совсем плохо (не будет еще периодичности, но уже не все числа будут простыми). Если теперь,(забив на отсутствие периодичности), сосчитать количество чисел нашего нечто таки по комбинаторным формулам (предполагающим периодичность), получим, в соответствии с эмпирическими данными ТС, что доля простых близка доле чисел нашего нечто (в котором есть и непростые) на соответствующем отрезке. Т.е. , две ошибки чудесным образом компенсировались. И это - интересное наблюдение.
3. Доказательно-объяснительная часть, состоящая в "очевидно" , "легко" и "можно", не вдохновляет
4. Однако у меня остается твердое убеждение впечатление, что на основе таких рассуждений, дополнив их индукцией (и,конечно возможно, используя известную формулу для распределения простых чисел) можно получить формулу для распределения простых чисел
Значит мне правильно показалось
По-видимому, автор нашел распространенный здесь неработающий баян:
попытка аппроксимировать $\pi(x)$ через $g(\sqrt{x})=\prod\limits_{p\leqslant\sqrt{x}, \ p\text{ is prime}}\left(1-\frac{1}{p}\right)$
Однако, проблема в том, что давно известно, что $\frac{\pi(x)}{x}\sim\frac{1}{\ln x}$, а $g(x)\sim\frac{e^{-\gamma}}{\ln x}$, т.е. $\frac{\pi(x)}{x}\not\sim g(\sqrt{x})$, поскольку $e^\gamma \neq 2$, хотя $2e^{-\gamma}\approx 1$

Т.е. доказываемое утверждение не то чтобы не доказано - оно просто неверно.

Sim1 в сообщении #1111393 писал(а):
Попробуем определить производную для $\pi(X)$.
Поскольку $\pi(x)$ - кусочно-постоянная функция, то ее производная ... :-)

 
 
 
 Re: Кое-что о распределении простых чисел
Сообщение06.04.2016, 15:46 
Да, ТС перепутал производную и конечную разность.

 
 
 [ Сообщений: 29 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group